수1수능완성에서 헷갈리는게있어서요. 부탁드려요
게시글 주소: https://test.orbi.kr/0001830549
독학반수라 어디 물어볼데도 없고 답답해서요ㅜㅜ
수1 수능완성 96쪽에 15번 문제요.
f(x+2)는 f(x)를 x축 방향으로 -2만큼 평행 이동 시킨 그래프인데, f(x)의 반이라고 하니까 왼쪽 무한대로 갈수록 넓이가 반씩 줄고, 오른쪽 무한대로 갈수록 넓이가 두배씩 커지는거 아닌가요?
제가 뭘 잘못 생각하고 있는거죠?ㅠㅠ
도와주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
9시까지 입실인데….9:1분에 들어가도 입실 해주나요? 단대는 늦어도 들어가게 해주던데…
-
학원 알바용으로 빠르게 돌리려고 하는데 어려운거 쉬운거 상관없이 개념 설명 잘...
-
어제 생일이었음 2
초딩 때는 그냥 선물 받고 부모님이 갖고 싶은 거 사주니까 마냥 좋았음...
-
기차지나간당 2
부지런행
-
오래된 생각이에요
-
얼버기 2
좋은 아침
-
성대 복전 0
확정 점수는 아니지만 가채점 낙지 기준 성대 사회과학이 6칸, 인문과학이 7칸 정도...
-
기상 완료
-
춥고배고프다 2
밥줘...
-
이젠 이시간까지 안자고있네ㅋㅋ
-
밤샘해버렷네 4
으으
-
합격생중에 수리 틀린 경우도 있나요?
-
미친짓이겠죠?
-
심심해서 2
수분감 샀음 공통+미기확 전부 다 심심할 때마다 풀어야지 즐겁다!
-
김동욱쌤 기출 0
일클 + 연필통 하면서 기출까지 같이하려는데 추천하는 기출문제집있나요?
-
아이디드리면핑까해드립니다.
-
셋 중에 누가 제일 노래잘함?
-
삼반수에 대하여 1
(요약 있습니다!) 이건 제 얘기가 아니라 제가 아주 아끼는 친구 얘기입니다 (저는...
-
표점 뭐 134임? ㅋㅋㅋㅋㅋ 납득하기 어려운데
-
지금 일어난 게 아니라 아직 안잔 거임.. 몇주 뒤에 유럽여행 가는데 강제 시차적응 on
-
딱알았다 1
누누로는 골드탈출못한다 내가 무언가 해야하는구나
-
컨설팅 받을까요 14
올해 삼수째고 목표하던 대학 라인이 간당간당한 성적이라 작년 이맘때쯤보다 더...
-
얼버기 2
는 아니고 술먹고 이제 집들어가는중 헤헤
-
잔다 2
르크
-
패턴 정상화 시킨다
-
이러면 무슨 의미가 잇음
-
이주비용 다 갚고 집짓고 그냥 영락없는 한국인이네
-
얼버기 9
-
세상 답도ㅜ없이 문과스런 절 데려가주실 대학은요
-
제가 중학교 과정까지만 들어있고 고1 과정은 구멍이 많아 다시 해야하는 완전...
-
알맹이콘
-
제 재수삼수 최대의 적은 휴대폰이었음
-
잠이 안오뇨 1
인생 망햇뇨
-
기숙학원 사정상 못 가게 됬는데 혼자 어떻게 공부해야 할까요? (걍 과외 구해서...
-
제발. . . 지금 다니는 학교 뜨고 싶어요 ㅠㅠㅠㅠㅠ
-
집에서 독서실 다니면서 독재했는데 6월인가 7월쯤부터 풀어져서 새벽에 유튜브로 예능...
-
안녕하세요 예비고3 07입니다 원래 계획대로라면 2-2학기 내신때 다니던 학원에서...
-
했을 때 환산점수가 진학사랑 너무 차이가 나는데 대학교 그걸 믿어야 하는건가요?...
-
이젠 미적 80이 2일지도?가 되면 어떡하노 ㅆㅂ
-
사람으로 돌아갈 시간이다
-
주말에 좀 쉬어야지
-
그러기에는 늦었나.. ....?
-
ㅇㅈ 11
-
푸흡 전 내일을 위해 자겠습뇨 푸히히
-
그냥 사람들이랑 부대끼는게 재밌어서 하는거임 근데 오늘은 좀 재밌게 즐기긴 한듯...
-
정의는 언제나 승리하니깐 어쩔 수 없나
-
잡 2
니다. 오늘은 내일을 위해 일찍 잠
-
아니 ㅅㅂ
약간의 착각을 하신 것 같네요 지금 책 보면서 설명해 드리겠습니다. 일단 (가)조건은 무난하게 이해하셨을 듯 하구요 문제는 (나) 조건인데 이 조건을 잘못 이해 하셔서 그런 겁니다. 편의상 먼저 (나)조건의 양변에 2를 곱합니다. 2f(x+2) = f(x) 가 나옵니다.
이 수식을 글쓴이는
f(x)를 x축 방향으로 -2만큼 이동한 후에 2를 곱하라-
라고 이해하신 것 같은데 이는 잘못된 해석입니다. 이 수식은
f(x)를 x축 방향으로 -2만큼 이동한 후에 2를 곱하면(2f(x+2)) 원함수(f(x))와 같다-
라고 이해하셔야 합니다.
이렇게 본다면 왼쪽으로 이동한 다음에 2를 곱해서 원함수가 나와야 하니까 오른쪽에 있는 삼각형의 크기가 작아야 함은 당연합니다 움직이는 것은 삼각형 하나가 아니라 함수그래프 전체의 개형입니다.
한번 착각하기 시작하면 다시 방향을 수정하기 힘든 실수인데요, 주의하셔야 합니다.
다른 방법으로는 x에 상수 하나(예를들면 1 )를 대입한 후에 나온 함수값을 비교해볼 수도 있습니다
등호(=)의 의미를 정확하게 숙지하시고 차근차근 읽어보세요