2월 20일(월)
게시글 주소: https://test.orbi.kr/0002791192
*단원: 기벡 공간도형, 평면의 방정식(이과 전용)
*예상정답률: 30%
*정답은 비밀글로 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대성 패스 구매하실 분 메가커피 기프티콘 같이 받아요 0
대성 마이맥 패스 구매하실 분 메가커피 쿠폰 같이 받아요! id :...
-
잘못읽고 제적각 뜬줄 ㅋㅋㅋㅋㅋ
-
딱 변별될만큼되고 괜찮은 셤지 아닌가
-
흠
-
참 적응이 안되구만
-
수능 3일 남은 재수생인데 상담해주실분 있을까요 ㅜ
-
니 뭐라했냐? 2
-
기침계속나오는데
-
바로 20번 21번
-
아 이건 너무 밸붕인가
-
- 이대가 지금 이토록 명성이 내려간 건, 학교 구성원이 여성으로 한정되어 있어...
-
안했으니까 찍기특강이나 봐야겠다
-
저 매년 엄마한테 받는데;; 옯평진짜 낮네요
-
옯만추 해봤는데 0
신선하고 좋았음 그래도 항상 이런 익명 커뮤니티에서는 사람 조심해야함
-
기습ㅇㅈ 14
은 제 남은 복무 일자입니다...
-
해설을 봐도 잘 이해가 안되네요 ㅠㅠ 도표 개고수분들 풀이 좀 알려주세요...
-
공학전환할시 -> 인서울 약대 추가 개꿀 전환안할시 -> 딱히 알빠노
-
국어
-
총학 선거 운동하고 학식 업체는 불법 점거 하고 있고 난리도 아니네요
-
언론은 너무 내려치기 하는것같고..이과기준 23133 이정도면 가능한가요....?
-
평가원보다조금빡센거같은데
-
수능 예상 9
수학 공통 2번 미분 계수 구하는 문제일듯
-
전 빼빼로 사니까 알바생이 손에 쥐어주더라고요 ㅋㅋ
-
풀이 방향 다 정해놨는데 능지 이슈로 풀이가 안먹힘ㅅㅂ
-
“줄건 줘” -시누-
-
우주의 등속 팽창과 광선 역진의 원리 결합해서 빛이 이동한 거리 ㄴ선지에 출제...
-
나름 어려운걸로 단련하고 가도 수능장에서는 현장감땜에 힘든가요?
-
엄한 사람 동상에 계란 던지는 건 좀 아닌듯
-
퍼옴
-
언매 OX 퀴즈 26
'잠꾸러기'에서 분석되는 형식형태소는 1개이다
-
유사 고백공격 당한듯 11
전남친이 빼빼로 6개짜리 보냈는데 이거 수능 3일 전 멘탈 공격 아님? 이새끼 반수한댔는데
-
뇌가 필요한 생각만 간결하게해서 잘풀리는거같기도하고... 근데 물론 위기대처능력은 떨어지긴함
-
여대->공학 0
대학이 여대에서 공학으로 바꾸는걸 말하겠냐? 당장에 생리결석도 좀 정확하게 하니깐...
-
인생좃박았다 진짜
-
그 학교 재학생은 아니지만 울학교도 아주 예전에 공학추진될 뻔한 적 있었는데...
-
모집 끝.
-
사탐런 어떻게 생각하세여?? 일단 전 내년 수능 보구 지금은 생지러이긴한데 사탐런이...
-
메디컬 자리 처먹고 옛날마냥 여성차별 받는시대도 아닌데 당연히 그 권리 누려야...
-
솔직하게 님들한테 욕먹을 생각하고 쓴거긴해요 ㅋㅋ 애초에 여기 오르비 꼬라지만 봐도...
-
화요일까지만? 수요일꺼지할까? 예비소집이라 학교도 가야해서 탐구랑 수학은 무조건...
-
한비자 지문(ebs교재에 있는거 그대로) 김원전 지문(ebs교재에 있는거 그대로)...
-
그래도 해야지...점수 받아야해
-
이대만 남기고 없애도 될거같은데
-
제일 어려울 것 같은 지문 예측 ㄱㄱ
혹시 9 - 4*(루트2)인가여?
아닙니다ㅜ 자연수가 나올겁니다...
혹시 18인가여? ㅠㅠ
네 맞아요ㅎㅎ
근데 첫번째 풀이에서 제 생각이
평면과 원기둥이 만나는 한점이
좌표계를 도입하면 (0,1,h)인데
그걸 평면의 방정식에 대입하면
h가 2*(루트2)-1이 나오던데요..
제 풀이 어디가 틀렸던거였는지좀 알려주세요~
음... x+y+z=2루트2와 원기둥이 만나는 점의 자취는 타원인데;;;
아마 C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 한 점의 좌표를 말씀하신 듯 합니다
그 점의 좌표를 (0,1,h)로 놓으셨는데 문제에서 조건들에 의해 x,y좌표는 이미 정해져있는것입니다
임의로 x=0, y=1로 놓으시면 안됩니다
한 편, C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나오는데
높이는 그것보다는 커야하므로 결과적으로 보아도 2루트2-1을 나오도록 하는,
C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 한 점은 (0, 1, h)로 놓을 수 없을 것입니다
18인가요?
정답입니다ㅎㅎ
18나왔어요 원기둥윗면이랑 저 방정식이랑 만나는 각도를구해서 닮음사용해서 높이구하니까 3루트2가나오더라구요 이렇게하는게맞나? ㅠ 기벡이기억이잘안나네여
네ㅎㅎ 그렇게 푸시는거 맞아요ㅎㅎ 정답ㅎㅎ
18요 ㅋㅋ x^2 + y^2 = 1과 z = 2루트2 -(x+y)에서 코시슈바르츠로 x+y의 최소값 찾아서 풀었네요 혹은 직선 x + y =2루트2에서 원점까지의 거리가 2이므로 거기에 반지름1 더하면 3, 여기서 두평면사이의 각도를 t라하면 tant = h/3인데 cost = 1/루트3이라서 tant = 루트2, 즉 h = 3루트2 이런식으로도 접근 가능하네요 ㅋㅋ
정답입니다ㅎㅎ 제가 만들었는데도 코시슈바르츠는 생각도 못했네요 발상이ㄷㄷ
18?
네 정답ㅎㅎ
8인가요?
아닙니다ㅜ
1 8 ?! ㅠ
정답ㅋㅋ
32인가요? 으아 틀린것같다ㅠㅠㅠ
오답입니다ㅜ
풀이를 알 수 있을까요? ㅠㅠ
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용해서 그 다음부터는 답을 구하실 수 있을 것 같네요...
18?? 또 틀린것 같긴 하지만 ㅠ
우왕 여기는 진짜 어려운듯..
이 문제들은 심심해서 만드시는거에여?ㄷㄷ
정답 18 맞아요ㅎㅎ
수학문제 만드는거는 취미라서 하고 있습니다ㅎㅎ
18 맞나요?
정답입니다ㅎㅎ
이거 어떻게 푸는게 정석인가요?
평면사이각 구하고, (0,0,0)하고 x+y+z=2루트2 거리구해서.. 코시컨트 탄젠트때려서 높이 구했는데요
쫌 이상하게 푼거같아서..
네 그렇게 푸는걸 의도한거 맞아요ㅎㅎ
법선벡터가 (1,1,1)이라
타원의 장축을 품는 직선이 점 A(2루트2/3,2루트2/3,2루트2/3)를 지나고, 선분 OA에 수직이며, 정사영내릴시 원 C의 지름을 포함하는 직선 l을 잡으니, 그 직선이 (0,0,2루트2)를 지난도록 계산되더라구여.
이때 장축의 양끝의 x, y 좌표는
(1/루트2, 1/루트2), (-1/루트2,-1/루트2) 로 추정되어 h^2=18이 나왔는데,
풀이와 정답은 어떻게 되나여??
ㅎㄷㄷ 좌표를 직접 구하셨네요 정답 18맞구요...
제가 의도한 풀이는 우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용하면 역시 3루트2가 나오구요...
32인가요/
아닙니다ㅜ
18 ~
정답ㅋㅋ
18
정답ㅊㅊ
혹시 18인가여??
네 정답ㅋㅋ
18?
정답이에요ㅋㅋ
18 아닙니까??
정답입니다ㅋㅋ
아무리 머리 굴려도 못풀겟는데.. 풀이나 힌트 없나요? 평면의 방정식에 2루트2가 힌트?
제가 의도한 풀이는 우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나옵니다. 이 두 가지를 이용하면 답을 찾으실 수 있을 것 같아요!
아 18인가요? ㅋㅋ 아 ... 피타고라스 이용해서 원기둥 높이의 일부분이 2루트2인것까지만 생각햇네요 ㄷㄷ
네 맞히셨어요ㅋㅋ
이런거 자작하시는 건지 아니면 어디서 갖고오나요? 자작하시는 거라면 문제 정말 잘만드시네요...
아 그리고 C의 중심을 0,0,0으로 잡으면 C의 오른쪽 점을 0,1,0으로 잡고하면 원기둥의 높이가 2루트2-1 나오던데...
이건 뭐죠 ㄷㄷ
감사합니다ㅎㅎ 직접 만드는거에요ㅎㅎ 보통 기출문제를 참고하여 그를 분석하면 풀 수 있도록 가공하구요
소재는 가끔 교과서에서 따와서 제 입맛에 맞게 원본과 전혀 다른 문제로 만들 때도 있는데
이 문제가 그에 해당합니다... 원기둥을 평면으로 자른다는 설정만 가져와서 제가 만들고 싶은 문제를 만든것이구요...
그리고 좌표를 설정하는 부분도 위에서 한 분이 질문하셨습니다
C가 아닌 원기둥의 밑면과 평면 x+y+z=2루트2가 만나는 점의 좌표를 (0,1,h)로 놓으신 셈인데,
문제에서 조건들에 의해 x,y좌표는 이미 정해져있는것입니다
임의로 x=0, y=1로 놓으시면 안됩니다
음... (-2분의루트2, -2분의루트2, h)평면에 대입하면 되는거 맞죠?/ 그러면 18인가??
아하... 좌표를 직접 구하셨네요 중간에 그렇게 푸신 분도 계셨고 답도 맞습니다ㅎㅎ
가장 많은 분들이 풀이하신 방법은
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나오면서 높이를 삼각비를 이용하여 구하면 2루트2+루트2가 되면서 3루트2를 구할 수 있습니다
아 ㅋㅋ 그런방법은 생각도 못했느데 ㅎㅎ
답 32 맞나요? 맞다면 의도하신 풀이는 뭔가요?
아닙니다ㅜㅜ
아 ㅋㅋ (-루트2,-루트2,~)점이 아니라 (-2분의 루트2,-2분의 루트2,~)점에서 만나는 거네요. 수능 끝났다고 계산실수해되네.. 답 18맞나요? 아니면 당황스러운데...
정답 맞아요ㅎㅎ 님 바로 위에 분도 좌표 설정하시고 푸셔서 맞히셨어요ㅎㅎ
제가 의도했던 풀이는
우선 C의 중심과 C '의 중심 사이의 거리는 x+y+z=2루트2에 x=0, y=0을 대입하면 z=2루트2가 나옵니다
여기에 C'의 정사영이 C라는 사실을 이용하기 위하여, 두 평면 x+y+z=2루트2와 z=0가 이루는 각에 대한 코사인 값을 구해보면
루트3분의 1이 나오면서 높이를 삼각비를 이용하여 구하면 2루트2+루트2가 되면서 3루트2를 구할 수 있습니다
흠냐 그런 풀이도 있군요 ㅎㅎ 재밌네요 문제 제공 감사드려요~~ 그럼 안녕히 주무시길 ㅎㅎ
8
18인가요??...ㅠ 오늘인기글에올라와있길러 처음뵙니닿ㅎ
18
답: 열여덟 아닌가요?? 답은 어디있나요?