VioletSky [287981] · MS 2009 · 쪽지

2012-06-19 23:14:45
조회수 520

극한 참거짓 문제좀 도와주세요.

게시글 주소: https://test.orbi.kr/0002932001

여기서 38번 문제. 교대급수 -1^n / 루트 n  같은거 말고  고등학교 수준에서 풀 수 있는 방법 없을까요?


0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 포카칩 · 240191 · 12/06/20 00:42 · MS 2008

    네 이건 고교과정을 넘어가는거라.. 칼큘러스에 나옵니다.

  • sos440 · 104180 · 12/06/22 21:26 · MS 2005

    애초에 빨리 수렴하는 급수에 대해서는 반례를 찾을 수 없습니다. 코시-슈바르츠 부등식을 쓰면, 수렴성에 관계없이 항상

    ∑ |a(n)b(n)| ≤ √(∑ a(n)²) · √(∑ b(n)²)

    임을 보일 수 있습니다. 따라서 만약 ∑ a(n)² 과 ∑ b(n)² 이 모두 수렴한다면, ∑ a(n)b(n) 은 절대수렴하고, 따라서 수렴합니다.

    그러므로 a(n)의 제곱의 합이 발산할 정도로 느리게 수렴하는 급수를 잡아야만 반례를 찾을 수 있지요. 하지만 예로 드신 것같은 급수는 사실 교대급수 정리를 배우지 않는 고등학교 과정에서는 반례로써 생각하기 쉽지 않습니다. 대신

    1, -1, 1/√2, -1/√2, 1/√3, -1/√3, …

    와 같은 수열을 생각하면 좀 더 편해지지요.