이과 수학덕후들만 보세요. [합성함수의 미분법]의 증명에 대한 보충설명
게시글 주소: https://test.orbi.kr/0002972671
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기분탓이죠?
-
연경 4
혹시 연경 예비 110번대 등급 어떻게 되시나요? 올해 수능 어느정도 나와야할지...
-
뭐가 더 낫나요?
-
님들 올해 지1 시험지난도로 내년에 내면 1컷 얼마일거같음? 21
제곧내 올해 시험지에서 몇점을 맞아야 내년에도 1이나올까 만백이랑 표점은 어떨까
-
경영학과 (예정) 인데 경영 - 경제 크로스로 복전 하는사람있나요? 난이도는 어느정도임?
-
근데 핑크 하늘은 예뻐서 패션용으로 이악물고 조기구매하는 매니아층 보임 베이지는 아직 잘 모르겟다
-
기부해요 나에게 덕코를 당신입니다 천사는 기부해주는
-
컨설턴트 뽑기운이 좋았던건지는 모르겠는데 제 경험만 말하면 돈값 하는거 같음
-
누가 현실에서 친구 붙잡고 과외생을 욕해요 커뮤에 푸념하는 거지 머 과외생 신상...
-
크크
-
함수추론 중요해여?
-
오르비식 노베는 9
백분위 99이하 인가요?
-
알면서도하게되는게1년꼬라박은수험생마음이긴하지만,,
-
11수 : 7
뭉지대에 간 나
-
화작은 진짜 참사남 쉽게나오면
-
가기 전에 공부는 얼마나 해야하는지 가서 또 수업은 어떻게 들을건지 컨텐츠 소화는...
-
캬캬.
-
상산고 나오셔서 7수하고 의대가신분 초 뭐시기였는데
-
재수: 2
중임뇨
-
물론나는 소추당했지만
-
재수 1
현역-혼자임 재수-혼자임 좆병신학교 정시파이터가한명이없냐ㅏㅏㅏ
-
공대 물리공부해놓으린거 어느정도 수준까지 하란거임? 1
뭐 수특2점은풀정도로? 개념ㅇ문제는 풀정도로 해놓으란거? 차피 수능이랑 결이...
-
이번 수능 언매 4등급 20분 가까이 쓰고 언매만 4개 틀렸습니다 매체도 하나...
-
내신은 친구=적이니까 1등급이 문앞에서 닫혔는데 앞에 닫은새끼 있을때 좆같음을 이루...
-
부경인아 국숭세단 가는 사람 있음?
-
2명 뽑는 농어촌전형입니다... 근데 점공 참여자 5명 중 4등인데 등수가 저렇게...
-
재수 0
현역-혼자임 재수-혼자임
-
????
-
'YE'
-
그보다 적으면 빈공간 있어서 좀 그렇고 5개 이상은 스와이프해야하니까 좀 그럼
-
서울대가고싶다 낮은인문까진 어캐어캐 갈만할거같은데
-
밋밋하지도 않고
-
흠
-
마플 삼도극 너무 어려운데 근사 써서 푸는걸 연습할까요? 5
예비고3 미적분 마플교과서로 학원에서 처음으로 배우고 있는데 삼도극 유형이 문제가...
-
ㅋㅋ
-
레어 자랑을 하면 다른 사람이 사간다는 얘기가 있다 15
나는 그 이야기를 참 좋아힌다
-
[인하대25학번] 인하대에는 어떤 동아리가 있을까? 동아리 추천해드릴게요! 0
대학커뮤니티 노크에서 선발한 인하대 선배가 오르비에 있는 예비 인하대생, 인하대...
-
안될거 같아서 안 썼는데 점공 보니까 해볼만한 점수였네 아 괜히 봤다
-
25 수능 과목 등급 원점수 언매 2 89 미적 4 영어 2 89 생1 5 화2 5...
-
본인 성수동 거주중이고 주방에서 한양대 보이는데 걸어서 학교가고 싶은 로망이 있어서...
-
리코리스 본적은 없음
-
야메추임
-
얘네좀 가져가봐
-
다 붙으셨길…
-
좀 빡세려나요 월 수 금 오후 8시부터 10시까지에 시급 15000원인데 성적이나...
-
어른의 행복은 조용하다 태수 에세이 명언 명대사 베스트셀러 0
어른의 행복은 조용하다 태수 에세이 명언 명대사 베스트셀러안녕하세요, 오늘은 최근...
-
작년에 너무 믄제만 벅벅해서 ㅈ된거같아서 수업도움도좀받아볼라하는데 방금 작년 사설...
-
강대 장학금 6
강대 장학금 라인 정시로는 어느정도 감?
합성함수의 미분법이 고교과정에선 완전하게 증명이 안 됐나요?
질문에 답해드리자면 Partialy Yes, Partialy No. 입니다. 수능에선 별 상관없는 미묘한 문제가 하나 걸려있는데요. 이번 글에서 바로 그 부분을 설명하고 있습니다. ^^
이번 글에선 더 이상 자세히 쓰진 않겠습니다.
이 부분이 궁금했는뎅 ㅠㅠ
고등학교 과정에서 다루는 함수들만 생각해보면, 고등학교 교과서에서 소개하는 수준의 증명으로도 충분하다는 것이 이번 글의 주제입니다. 그 근거들을 정확히 이해할 수 있다면 수리가형을 풀이하는데 필요한 실력을 쌓는데 도움이 많이 되거든요. ㅎ
제가 이 글에서 미분계수의 또 다른 정의와 이것을 이용한 연쇄법칙의 증명을 다루지 않은 이유는 (마치 극한의 입실론-델타 논법처럼) 수능이란 시험에선 별 도움이 안 되기 때문입니다. 이 부분은 학문적 즐거움을 위한 요소이지 수능을 위한 요소는 아니란 거죠.ㅎㅎ 정말 수학을 좋아하고 직업으로 수학자가 되고 싶어하는 일부 학생들을 위해서 입구가 여기에 있다는 정도만 언급한 것이라 이해해주세요.
정말 너무 궁금해서 견딜 수 없는 학생이 있다면 저에게 쪽지 주세요. 그럼 어떤 책의 어느 부분을 봐야 하는지 안내해드리겠습니다.
y=f(u), u=g(x) 가 미분가능하면,
u=g(x)가 미분 가능하므로
lim(Δx->0) Δu/Δx = g'(x) 이다. 따라서 e1= Δu/Δx - g'(x) 라 하면
Δu = (g'(x)+e1)Δx 이고 lim(Δx->0) e1 = 0 이다.
또 Δx->0 이면 Δu->0 임을 알 수 있다.
같은 방법으로 y= f(u) 가 미분 가능하므로
Δy = (f'(g(a)) +e2)Δu 이고 lim(Δu->0) e2 =0 이다.
그런데 Δy= (f'(g(x)) +e2)(g'(x)+ e1)Δx 이므로
dy/dx = lim(Δx->0) Δx/Δy = lim(Δx->0)(f'(g(x)) +e2)(g'(x)+e1)
= lim(Δx->0)(f'(g(x)) +e2) lim(Δx->0) (g'(x) +e1) 이다.
Δx->0 일 때 Δu ->0 이므로
dy/dx = f'(g(x))g'(x) 이다
알기 쉬운 해석학(장건수 외5인) 에 나와있는 증명입니다
옙. 이런 방식으로 증명해요. 감사합니다. 제 수고를 덜어주셔서. ^^
사실 제가 생각하는 가장 깔끔하면서도 일반적인 증명법은, 미분계수를 정의하는 성질인 'best linear approximation property' (라고 거창하게 부르기도 뭣하지만 어쨋든 그런 성질)을 이용하는 증명입니다.
이게 중요한 이유는
(1) 미분계수의 기하학적인 의미를 아주 명확하게 보여주며
(2) 이 성질이 사실상 미분가능성과 동치이고
(3) 이 성질은 더 넓은 범위로도 확장하여 사용 가능하기 때문입니다. 예를 들면 선형사상이나 functional같은 함수들도 미분 가능하지요.
오!! sos440님이 코멘트 해주시다니 영광입니다.^^
(블로그 재미있게 보고 있어요. 제 실력이 부족해서 이해 못하는 부분이 많지만요. ㅠㅠ)
한가지 간단한 질문이 있는데요. best linear approximation이란 게 정확히 무엇을 가리키는지요?
제가 알고 있는 범위에서는
주어진 함수를 local하게 일차식으로 근사시키고, 여기에 little o로 표현되는 error term 하나 붙이는 방식을 가리키는 것이라 생각되는데요.
"best"라는 말이 붙어서 혹시 다른 게 아닌가 싶어서 질문 드립니다.
제가 생각하고 있는 그 성질이 아니라면 간단하게 좌표 찍어주시면 대단히 감사하겠습니다. ^^
허허, 영광이라뇨...;; 뭐 사실 그 말이 그 말이라 딱히 다른 개념은 아닌데요, 그냥
[성질] 임의의 ε > 0 에 대하여, 어떤 δ > 0 이 존재하여, |Δx| < δ 이면 항상 | f(x+Δx) - (f(x) + f'(x)Δx) | ≤ ε|Δx| 이다.
를 만족하면 함수 f 가 x에서 미분 가능하고 미분계수가 f'(x) 라는 식으로 조금만 말을 바꾼 것이죠.
깔끔하네요. 감사합니다! :)
블로그 주소도 써주세요...
sodong212.blog.me 입니다. :)