수학의 원리와 개념 확실하신분들! 연립방정식질문드립니다ㅠ!!
게시글 주소: https://test.orbi.kr/0002978185
수학문제를 풀던중에 무심결에 연립방정식의 풀이에 대한 원리를 생각해봤는데
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전 한쪽으로 권력이 치우치면 절대 안된다고 생각해서 항상 여당 혹은 다수당을 견제하는 투표를 함
-
피규어는? 레진
-
추론은 알아서들 하시고 칠지 말지 선택 해 주십쇼
-
다 공부하면 일본고등학교 수학문제정도 읽을수있나요???
-
예비고2임다 쎈발점 끝냈는데 수1 양승진 기출코드? 실전코드? 김기현 아이디어 +...
-
정치성향 테스트 보면 교정주의 우세한 사람은 별로 없는듯 근데 사실 다 비슷한게...
-
관리자한테 고소미먹은건 아니겠지?
-
도전하는 유튜버도 이 도전의 성공을 장담하지 못하고 이 도전이 끝난 후 어떠한...
-
이 둘중 하니 갈수있다면 어디감?? 기본적인 대학 선호도는 연대가 더 좋다는 가정 하에
-
원장연들은 모르겠디 ㅎㅎ
-
그래서 베르세르크만 5번 회독함 ㅋㅋㅋ
-
제가 제일 좋아하는 애니메이션 감독분들입니다 보고 실망한 적이 없음 한분이 너무...
-
최근 먹은것 1
이거 말고도 굴비 굴전 고구마 지코바 방어회 간장게장 고기 뷔페 등등 많이 먹음
-
난 씹덕 아닌듯 11
ㄹㅇ로
-
나도 드디어 어엿한 헬창 입문이다
-
빈 칸에 무엇이 들어갈지는 오르비언들이 정한다네요
-
왜클릭.
-
여자처럼 생겨서 그냥 별 감흥 없었는데 남자인 거 알고 반응옴
-
[미방분] ㅇㅈ 11
졸업식 헤헿
-
이거 잘맞는 듯 한가여
-
본 애니 목록 3
쓸 수가 없어요.. . L사이트에서보다가 WAVVE로 보다가 NETFLIX로 보다가...
-
잔잔하군아
-
일단 전 안봐쓰요
-
둘 차이 아시는분
-
아무래도 2월 7일일까요?
-
진보?보수??
-
시청 애니목록 4
원펀맨, 사이버펑크, 메이드래곤 이정도면 십덕 맞죠?
-
차단 목록 공개 4
왜 들어옴?
-
입술 탕후루 9
립밤 발랐더니 탕후루됨 냠냠
-
다본건 봇치더락 케이온 걸즈밴드크라이(GOAT) 마법사의 신부 우국의 모리아티 문호...
-
미국만 보더라도 200년동안 탄핵이 단 한건도 없었다는데 일단 이 내용은...
-
정치성향 1트 3
우리나라 정당 중 지지정당은 없음
-
인생 꼬인다
-
보통 표준편차로 학교 수준 구분하잖아요? 근데 그 펴준편차가 중간고사 끝나고 나오는...
-
ㅁㅌㅊ? 걍 전기장판 살걸그랬나
-
ㅈㄱㄴ
-
요즘 웹툰은 자기 작품에 대한 애정이 없는거 같아요.. 1
이게 다 박태준 때문이야 죽어
-
애니 시청 목록 13
쓰면 가짜십덕 취급 받을까봐 안올릴게요..
-
해도 결과가 무슨뜻인지 잘 모름 ㅎ.ㅎ;;
-
마마마 유유유 프린세스프린서플 우마루 유능한 고양이는 오늘도 우울 블랜드s
-
선지 다 읽나요? 아니면 풀었다 싶으면 적당히 넘어가나요?
-
인생애니픽7개 0
도쿄 구울 종말의 세라프 청의 엑소시스트 사이코패스 에이티식스 문호 스트레이독스 하이큐
-
애니 시청목록 5
-
정치 성향 ㅇㅈ 0
뭐라고 해석하면 되나요
-
애니시청목록 10
메이드인어비스 암살교실 귀칼 일하는세포들 채애애아이 프리렌 선배는남자아이 전생슬
-
메디컬 대학교수를 목표로 하면은 박사를 따야한다고 들었는데, 박사과정은...
지적하신게 맞아요.
정확한 논리는 우리가 보통 하는 과정은 x,y가 해라면 만족해야하는 조건
즉, 해의 필요조건을 구한 것이구요.
논리적으로는 이렇게 구한 해를 실제로 대입해서, 성립하는지 확인해야 정확한 해가 되는 것입니다.
(예를 들어, 분수방정식 푼 경우는 이런식으로 해를 구하면 흔히 말하는 무연근이 나올 수 있는 것이죠.)
정말 감사합니다^^
궁금한점이 있는데요!
필요조건이라하믄 이방법으로 해를 구하였을때
해 일 수 있는 가능성이 있는 것은 모두 포함 한다는것이 아닌가요?
그렇다면 어떻게 저 방법을 통한다면 해일수 있는 모든것들이 구해지는것일까요?
(질문의 요점은 이런것들이었는데 제가 전달을 잘하지 못한것같군요ㅠㅠ)
첫째 질문에 대한 답은 네 이고요.
두번째 질문에 대해서는
해라면 서로다른 식의 x,y과 같은 x,y가 될 것이고, 그로부터 유도한 식들역시 그 x,y가 모두 만족해야 하니까 입니다.
으엉ㅠㅠ
그러니까 왜 유도한 식들이 x와 y일수 있는것들을 모두(!) 포함하는것일까용?
x,y일수 있는 것들이 그 식을 만족해야하니까요! 이 문장이 이해가 안가시는건지요?
아님 이 문장은 이해가는데 그 다음이 이해 안가시는지요?
연립방정식의 풀이를 요약하자면
두식의 x,y가 같다는걸 전제로 하나의 x또는 y만 의식으로 만든다.
(즉 우리가 알고있는 방정식으로 만듭니다)
인데요,
이 말은 즉슨, 연립되는 두식의x와 y가 같은 어떨때, 이 식이 성립된다는것이겠죠,
두식의 x와 y가 같을때 모두(!)를 이 식이 나타내느냐는 별도의 설명이 필요한것아닐까요?(사실, 이것이 당연히 옳고 그르냐보다 왜 그러한가를 어떻게 설명하는지가 정말 궁금합니다)
학생이기에 아직 많이배워야하는 상황이죠ㅠ