-
확인하고 안심하고 가자구
-
이걸 걸러야돼 말아야돼... 반면 상상 8 9 10에는 이감 B도 있어서 이걸 더...
-
새해의 눈시울이 순수의 얼음꽃, 승천한 눈물들이 다시 땅 위에 떨구이는 백설을 담고 온다.
-
이감에 시즌6이랑 파이널2랑 같은거지? 국어 파이널2 7차면 이감 시즌6 7회차...
-
국어-이번주까지 실모+언매 양치기, 다음주부터 24 69수능, 2506 기출 ,...
-
오늘은 긴바지를 6
착용 쌀랑해
-
아 패딩어디갔어 2
뒤지게춥메
-
수능 도시락 0
본가말고 타지역에서 수능보는데 도시락을 어케해야할까요..
-
ㄹㅇ 이정도면 사교육판에서 참강사임 내 구 담임들보다 좋은듯
-
한의원 가서 침 맞으면 도움 좀 되나요?? 고개 조금만 숙이고 있어도 땡김..
-
공부하려고 책 펴도 힘들었던 일들이 계속 생각나고 집중할 수가 없음
-
탐구연계 0
탐구 수완 연계는 어느정도 유의미한가요.. 물리 화학 기준으로여 물리 수완 아직...
-
박석준T 듣는데 수업에서 연계 예상 이런건 잘 안 해주셔서... 출제기조 자체...
-
ㅈㄱㄴ
-
이건좀
-
짜피 고대 서강 성균관 밖에 안 썼는데.. 여기에서는 납치 당하고 싶어서요
-
얼버기 2
늦버기...
-
시작
-
강대x 2컷~2컷+8정도 나옴
-
오늘도 파이팅.
-
얼버기상 1
오늘도 또! 버러지 같이 시간을 낭비하겠군
-
에구궁 졸려 1
준비 갈 완료
-
하면 얼어죽을듯
-
하늘을 찌르는 SOXL + 트럼프 밈주 + 환율 폭등 1000만원으로 하루만에...
-
기하는 풀이 없는 것 같아서 올려봅니다. 28 빼고 시간재고 푼 풀이고 28은...
-
얼버기 2
앞줄 어느방은 2시부터 4시간동안 알람을 안꺼??
-
반팔 입어야징
-
얼버기 7
후후후
-
尹대통령, 오늘 대국민 담화·회견…대통령실 "모든 사안 설명" 1
국정쇄신 방안·명태균 논란·김여사 문제 등에 직접 답변 (서울=연합뉴스) 곽민서...
-
자세한 것은 눈 좀 붙이고 수업 끝난 후에 공지사항 올리겠음요. 공지사항 올라가면...
-
와 2도야 미친 2
ㄹㅇ 세종대왕님인가 ㅈㄴ 춥네
-
독서 사회,경제:아웃소싱->국제적으로(오프쇼어링)+경상수지...
-
생1에서 윤도영 아니면 만점 힘들 정도로 절대적임?
-
일탈행위의 발생과정에서 나타나는 상호작용에 주목하는가? 에 맞는게 차별적교제이론...
-
1. 대망의 첫 수능 이후 의과대학 성적과 수능 성적의 상관계수를 내본 논문의...
-
꼼꼼히 한다 하면 개념 얼마나 걸려요..???
-
얼버잠 1
다들 평안한 밤 되십시오. 소등하겠슴다.
-
책 왕창 빌리고 샀는데 시간 순삭이넴 글고 안 유명한데 재밌는 책 발견하면 좀 짜릿함ㅎ
-
진짜 집에 아직도 있는게 소름이넹 ㅋㅋㅋ
-
A 소유의 □□ 상가를 임차하여 창고업을 운영하고 있는 B는 미성년자 갑을 적법한...
-
얼버기 1
아파ㅓ 일찍자고 이제 일남
-
최저러라서 마지막 일주일동안 생윤 커리 하나만 더 듣고 마무리하고싶은데 뭘 하면...
-
인생이 X같아서 많이 들었음
-
세지 정법 둘 다 문제스타일이 굉장히 물화생지윤리사문역사에 비해 마음에 듦 ㅋㅋ
-
쿠팡 몰빵 4
누가 이기나보자
-
예비 고3입니다 4
지금 현재 10모 백분위 대략 99 초반이 떳는데 고3되면 어느정도 되나요?
-
수능 현장에서 볼 생명, 언매, 수학 개념 정리 자료 있을까요? 0
종이 몇장 정도 분량으로 생명이랑 언매, 수학만 있으면 될 듯 한데 혹시 이런 자료...
-
점수가 맨틀 뚫고 내핵까지 들어가는데 그냥 기출 복습이나 할까요.. ㅠㅠ
-
고양이 아니면 나한테 말걸지 말아줘
이런문제는어디서얻나요?
수리나 문제집춫현좀
제가 공부하면서 문제 많이 풀고,
그걸 바탕으로 생각나는데로 만든거에여 ㅋㅋ
수리나 문제집은 자이스토리 추천 ㅋㅋ
a_4 (2) = 8 이고 a_5 (3) = 6 이어서 합하면 14인가요?
아랫문제는 5번이요!
ABA + A = E --> A(BA+E)=E 이므로 A의 역행렬 존재. (따라서 두번째 식 A^2 B^2 = A --> AB^2 = E 이므로 B의 역행렬 존재하는 것도 알 수 있고요.) (BA+E)A=E --> 원래식과 비교하여 ABA=BA^2 --> AB=BA 이므로 ㄱ 참.
ㄴ은 (ㄱ에 의해) AB^2 =E와 동치이므로 참.
B가 역행렬 존재하므로 ㄷ은 AB^2 = B^3 -B 와 동치. 이는 다시 B^3 - B = E 와 동치. 이 식은, 원식2개 A^2 B +A=E , AB^2 =E 에서 유도가능하므로 참. (A 소거하면 되는데, 첫식 양변에 B^3 곱해서 A^2 B^4 + AB^3 = B^3 --> E + B = B^3)
물어보시진 않았지만 껌은 자이리톨 추천 ㅎㅎ
네ㅋㅋㅋ 둘다 맞아요!
항상 열심히 풀어주셔서 감사해요 ㅎㅎ
역행렬이 존재한다는것의 의미는 여기서 뭔가요?? 정의를 사용할수있다는건가요?
그리고 A- 같은 기호는 풀때는 필요가 없는건가요?
정사각행렬X에 대해 XY=E인 정사각행렬Y가 존재하면, 말 그대로 'X의 역행렬이 존재한다' 라고 합니다. 이 때 Y를 X의 역행렬이라 하고요.
위에서 A(BA+E)=E 이면 BA+E가 A의 역행렬이 되는 것이고, A의 역행렬이 존재한다고 말할 수 있습니다. AB^2 =E 이면, (AB)B=E 이니까, AB가 B의 역행렬이 되는 것이고 B의 역행렬도 존재한다 말할 수 있고요. (혹은 AB^2 = E에서 A의 역행렬이 B^2 이 되는 것이라고 이야기할 수도 있습니다.)
또한 B의 역행렬이 존재하면, C=D 와 CB=DB가 완전히 동치입니다. C-D=O <==> (C-D)B=O 이기 떄문이지요. (좌 ==> 우 는 당연하고, 우 ==> 좌는 B의 역행렬을 우측에 곱함으로써 바로 얻을 수 있으니 동치입니다.) 이 사실을 ㄷ에서 사용했습니다^^
앜ㅋㅋ1번세로길이8인데 계속 2*3생각하면서 왜틀렸지하고있었네욬ㅋㅋ