-
내 오랜 꿈이다... 어쩌다가 이렇게 됐는지
-
3박4일이라는데 이게 맞나요... 부모님도 이거땜에 싸우던데 하...
-
사라질 직종이 어떤 것일까는 정확히 예측 불가능한거임?
-
복지부 교육부 멍청한놈들 때문에 이게 뭔 혼란이람
-
다이어트중이라 밥 남김 이게 남긴거냐는 말은 ㄴㄴㄴㄴ
-
ㅇㅂㄱ 0
으아아
-
표지의 상징은 희망입니다. ㅎㅎ 실제책 내지는 맛보기와 달리 표지와 비슷한 색으로...
-
얘들아 @@이 야한게임한대~
-
에 대해서 1년전쯤 학부생수준에서 자필로 규명해놓았던 자료를 공유합니다 ㅇㅇ...
-
성대가 조발이 가능한 이유와 다른 학교가 못하는 이유 0
보통 조기발표 하는 학교는 정시에서 특별전형(농어촌, 기회균등, 외국인, 장애인...
-
국어 평균 5등급 이거랑 다를 바가 없는 소리임. 그니까 리트는 로스쿨 가야지!...
-
김승리 언매 34강 있는대 언제 다 듣지 노베긴한데 하.. 다른 과목도 급한데 걍...
-
아가기상 9
우웅
-
세계관 재정립 4
공허참에 의하면 전건이 거짓이면 명제가 참이다 p->q 에서 p가 거짓이면...
-
피램 화작 보는데 글씨가 많이 작긴하네 그냥 뽑아서 풀어야하나
-
자이 고난도나 마더텅 고난도, 이투스 15분 킬러 다 풀어봤는데 좀 쉽더라구요 현재...
-
전 한끼정도만 집에있는거 먹고 다른건 나가서먹거나 배달인듯..
-
지방교대에용 점공률 42즈음이고 작년에 예비 50까진가 돈거같은데
-
두 줄이네요 9
독감이
-
외로움 이런거 말고 학점에서 불리함 등등
-
‘시험 난이도 함부로 예단하기’ 이거같음 내가 그러다가 망했거든..
-
혹시 695.49 점공 몇등인지 봐주실 분 계신가요? 만덕 사례해드려요
-
입결은 연>>>경희지만 사회나가면 어디가 더 유리할까요..? 취업 잘되는건...
-
여캐일러 투척 4
화2 정복 3일차
-
교재 퀄리티가 개지림요. 종이질이 걍 넘사고 360도로 펴지는거 필기할때 개편해요....
-
많이 별로임? 법무사+세무사 둘 다 있으면?
-
어르신 조은 하루 보내세연
-
신성규쌤 유튜브 해설 영상 다 내려간 거 아쉽네.. 0
거기서 진짜 많이 배웠는데 개인적으로 D=0 풀이 <--이게 가장 기억에 남음.
-
https://orbi.kr/5a5e99f2-422f-4155-a246-ee5065b...
-
나 어카지 0
친구들이랑 게임하기로 해놓고 잠들어버림.. 뭐라고 해야하지
-
철퍽 으아아앙
-
??
-
현우진이 최초임?
-
션티 홍보 0
키싱앱 너무 굿
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 잃어버린 또다른걸 찾다가 찾음
-
너무 막바지에 있어서 무서운데 추합도 많이 안 돌 것 같아서...
-
ㅇㅂㄱ 8
-
ㅋㅋㅋㅋㅋㅋㅋ아 설윤교로결정햇다고 글을 썼네….사범 안 썼습니당 (╹◡╹)
-
근데 교육청은 대체적으로 계산량이 좀 있는거 거 같음
-
멘사코리아 직접 가서 iq테스트 해보신 분 있어요?? 13
멘사코리아에서 주최하는 멘사테스트를 쳐볼까 하는데 (25년 일정은 아직 안 나옴)...
-
합격
-
단어가 개어렵네 0
영어 고1에서 고2모고로 올라오니 단어가 진짜 개어려운데 단어부터 외우고 오는게 맞으려나
-
이제 빨뻗고 똥글 쓰자
-
철학의 본질이 인간의 존재에 대한 질문과 탐구라면 신화는 가장 오랜시간 이어져...
-
농협 하나로마트 만세
-
내가 미안해 빨리 돌아와줘
-
오늘은 밥먹고 스카 병원 헬스장 고고혓 사람답게살아야제..
-
초염몽 원톱으로 스토리 밀었어서 갸라도스 <<< 이새기 진짜 통곡의 벽이였는데 이...
28
틀렸습니다ㅜㅜ
아 아래 피카츄님 댓 보고 알았네요
aa가 아니라 aa'이군요 ㅋㅋㅋ
식은 맞았는데 깝쓰..ㅠ
아...그랬군요 진짜 아깝네요ㅜㅜ
풀어주셔서 정말 감사합니다!
모든 항의 계수가 유리수 + 미분계수가 0인 지점에서 연결이 되어야 하고, 일대일대응 조건과 fexp(f)가 양쪽 끝에서 점근선 y=0을 갖고 이차함수 대칭축과 동일한 선대칭임을 생각했을 때
f(1)= -1이고 f(0)=8이어야 하는데 최고차계수가 -1이면 그러한 이차함수가 존재하지 않는 것 같습니다...
캐치하지 못한 게 있을까요.
평행이동한 이차함수와 f exp(f)가 아구가 맞아서 증가함수가 되어야 하니깐 a=연결지점=1이고
따라서 f는 x=0 선대칭. 이런 식으로 생각했습니다.
아 설마 이거 f(1)=0이라서 초월함수 미분계수랑 이차함수 ㅁㅣ계랑 우연히 맞아떨어져서 연결되는 건가요;이러면 계수에 무리수가 없어도 가능할 것 같긴 한데
이러면 g'=0이 no solution이 되어버려서 안될 것 같네요
f(0)=8이 나온 과정을 여쭤봐도 될까요?
풀었습니다
α=1
f의 대칭축을 x=k라고 하자.
1-k= a
f(1)= -1 , f(k)=8
-> f(x)= -(x-k)^2 +8
-> -(1-k)^2 +8 = -1
-> (1-k)^2 = 9
-> 1-k= 3 := a, k=-2
f(x)= -(x+2)^2 +8
f(aα)= f(3)= -25+8=-23
23
ㅠ 제가 틀렸군요
제가 틀렸을수도...
잘 푸신거 같은데 답이 계속 달라서 뭐지 했네요. 마지막줄 계산실수 빼고 답 맞습니다ㅎㅎ
엌ㅋㅋㅋ17이근요; 어떻게 계산을 저따구로 했지
정답!ㅎㅎ
풀어주셔서 감사합니다~
1-k가 -3이 왜 안 되는지 좀 알려주시면 안 될까요???
1>k이기 때문입니다. 대칭축이 1보다 왼쪽에 있어야 해서요
아하 감사합니다!!
해볼까하다가 안 했는데 도전해봅니다
저는 답이 없는 걸로 나오는데 부탁드립니다
아 뭐야 a랑 α였군요 폰으로 작게 봐서 둘다 a인줄...에휴 제가 잘못 봤습니다 문제 없을 듯
헉 ㅋㅋㅋㅋ
아ㅋㅋㅋ담부턴 헷갈리지 않게 만들겠습니다
답이 2인가요 왜케 느낌이 불안하지
틀렸습니다ㅜㅜ
x>1에서 미분한걸 계속 f(X)2+f'(x)로 봐가지고 f'(1)=-1 나와가지고 고민했네요 ㅋㅋ 왜 미분을 못해가지고 이러지
17...?
정답입니다!!
풀어주셔서 감사합니다~~
감사합니다 !! 계수가 유리수란 조건이 기출에서 본적이 있어서 아이디어를 좀 쉽게 얻은거 같아요!
아하 그랬군요ㅎㅎ