심플한 도형 풀이 공개합니다
게시글 주소: https://test.orbi.kr/00037712736
이전글에 올렸던 문제의 심플한 풀이.
먼저 사고과정은 아래와 같습니다.
1. 호 CD와 호DE의 길이가 같다
2. 색칠한 부분의 넓이가 삼각형 BDE와 같다
3. 삼각형 BDE는 삼각형 ABC와 닮음이다
4. 선분DE 또는 BD의 길이를 구해서 닮음비를 구한다
5. ABC의 넓이를 구해서 넓이비(닮음비 제곱)를 곱한다
깔끔하게 답을 구할 수 있습니다.
정답은 50분의 21루트3
그런데 말입니다. 진짜 문제는, 시험장에서,
각각의 과정을 어떻게 떠올릴 것인가
각 단계별로 사용되는
도형을 다루는 기본 원칙들을 알려드립니다.
1. 원 나오면 반지름
원 위의 특수한 점은 반드시 중심과 연결되어야 합니다.
'중심과의 거리'가 같다는 것이 원의 정의이기 때문이죠.
따라서 점 A, C, D, E 는 중심O(로 정의)와 연결되어야 합니다.
이때, C, D, E에 의해 만들어지는 반지름에 의하여
중심각이 만들어지는데, 둘다 60도가 됩니다.
따라서, 부채꼴 OCD와 ODE는 합동이고
호/현 CD와 DE의 길이가 각각 서로 같습니다.
여기서, 원주각 CAD와 DAE가 같으니 굳이 반지름 없이도
호가 같다는 것을 알수 있지 않는가?
라고 생각할 수 있겠죠. 그게 바로 보인다면 문제는 없지만,
원주각에 대한 모든 성질은 중심각이 있어야만 유도되는 것입니다.
따라서 원주각이 등장하면 중심각으로 연결하는 것이
더 우선되는 일관된 원칙이어야 합니다.
2. 복잡한 도형을 간단한 도형으로
활꼴 CD를 DE부분에 채워서 삼각형 BDE를 만드는 아이디어
평가원에서는 의미없이 복잡한 도형을 주지 않습니다.
단순히 계산을 복잡하게 하지는 않는다는 뜻이죠.
기출에서도, 복잡해 보이는 도형을
다른 도형으로 변환시켜서 간단하게 보이는 여러 예를
찾아 볼 수 있으니 연습해 두어야 합니다.
3. 삼각형의 기본은 닮음
중학수학에서 배우는 도형의 매우 많은 부분에서
삼각형의 닮음을 이용해서 증명을 하곤 합니다.
할선 정리를 이용할 수도 있지 않나?
라고 생각한다면 할선정리의 증명이
삼각형의 닮음에 의한 것임을 공부해야 합니다.
4. 길이는 수선의 발을 이용
선분DE 또는 BD의 길이를 구하기 위해서는
먼저 선분 BC의 길이를 구해야 합니다.
이때, 코사인 법칙을 사용할 수도 있지만
C에서 AB에 수선의 발H를 내리면 됩니다.
각 A가 특수각 60도임을 이용하고
피타고라스 정리를 한번 더 쓰면
BC이 길이를 구할 수 있습니다.
이런 과정은 코사인 법칙의 증명입니다.
5. 넓이는 가장 쉬운 방법으로
위에서 수선의 발을 내리고 수선의 길이를 구했다면
넓이를 구할 준비는 이미 모두 끝난것이겠죠.
계산만 하면 됩니다.
사인함수를 이용한 넓이 공식은 결국 높이,
이 문제에서는 수선 CH를 구하기 위함이므로
특수각을 이용해서 구하는 것으로 충분합니다.
어떤가요?
중학수학에서 배우는 내용만으로 이 문제는 해결됩니다.
이 도형은 작년에 가형에서
무한등비급수와 프랙탈 문제로 출제되었고
오답률이 매우 높았던 어려운 문제였습니다.
단계별로 발상을 떠올리기가 어렵다는
학생들의 의견이 많았죠.
도형에서의 발상,
반드시 공식의 증명과정에서 나옵니다.
교과서에 기반하고 있지 않은
의미없이 복잡한 도형은 절대로
평가원에서 출제할 수 없습니다.
코사인법칙, 사인법칙, 삼각형 넓이, 할선정리 등등
증명할 수 있다면 그 과정을 꼭 외워두세요.
그리고 그 과정에서의
매우 기본적인 행동패턴들,
수선의 발 내리기, 반지름 그리기 등을
정리해 두면 발상때문에 고민할 필요가 없습니다.
도형을 마주치면 해야할 행동을 해라.
그러면 자연스럽게 해설지에 있는 그림이 완성될 것이다.
이것이 도형 문제에 대한
수학강사 이승효의 철학입니다.
이번 Live100 시즌1 <6평, 100분이면 충분해>
를 통해 제가 깔끔하게 정리해 드리려고 합니다.
이번 한번으로 도형문제는 끝날거라고
자신있게 말씀드리겠습니다.
6평대비 100분 특강
<도형을 심플하게 만드는 꿀팁!!>
수업 일시 : 5월 29일(토) 오후3시~4시40분
수강료 : 20,000원 (교재비 추가 없음)
현강 장소 : 강남(서초)오르비학원 (강남역)
- 주소 : 서울특별시 서초구 서초대로 74길 33 비트빌딩 2층
- 연락처 : 02-522-0207
- 지도 : https://academy.orbi.kr/gangnam/ipsi_result/directions
비대면 수강(실시간 스트리밍)도 가능합니다.
결제 완료 되면, 수업일 전에 수강 방법 안내 문자 발송 됩니다.
수강신청 바로가기
https://special-oa.orbi.kr/booking/gangnam/payment?showonly=349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365
* PC버전에서 수강신청하는게 좋다고 하네요.
결제에 어려움이 있다면 학원으로 전화주세요.
Live100 결제관련 공지 참조 https://orbi.kr/00037693486
이승효 강사 소개
메가스터디 러셀, 메가스터디 재수종합반 출강했고
현재 오르비학원 강남 / 대치에서 수업중인 수능수학 전문 강사입니다.
질문은 댓글로 받습니다. 좋아요와 팔로우도 감사드릴게요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
컴잘알 있으심? 240hz방어 할려면 가격 어느정도.? 0
배그돌아갈정도로만 테슬라로 돈을 너무 벌어서 소비좀하게요
-
인강 강사 추천 0
대성 마이맥은 처음 들어봐서 인강 강사분들 스타일을 모르는데 도움좀 주세요ㅠ 현...
-
생1 생2 지식 물어보겠다는 거죠? 출제범위는 수능 시험범위를 적용한다고 돼있네요
-
ㅈㄱㄴ
-
돈은없는데 0
학기중이라 알바하긴 힘들고 근데 학교다니니 돈나갈일은 많고 존나거지됨..0
-
현역때부터 유명하다는 선생님들 강의 거의 들어봤는데 솔직히 두분다 4타는 말이...
-
백분위 99인가여 98인가요 아 근데 지구 망해서 ㅈ같네..
-
카드자랑 9
니지카 카드야
-
경북대 괜히 썼나????
-
대형 회사에 들어가셔야 정상인데… 선생같지도 않은 사람이 오히려 들어갈려는 소문이...
-
6모 만점 9모 만점 수능 만점 음하하하하
-
시발대체이시간에뭘자꾸싹뚝싹뚝오려댐
-
단순한 궁금증인데 논술 시험장 가면 보통 감독관 분들은 대학원생..?인가요? 아님...
-
불안해서 텔그랑 낙지 계속둘러보고잇네…ㅎㅎ
-
20살때 나보다 훨씬 더 나은 나인데 행복도가 크게 달라지지는 않는군요
-
기하런? 0
미적 30번 같은 건 시험장에서 극복이 안되고 많이 하면 된다고는 하지만 시험장에서...
-
애니나 드라마 같은건 없나요? 있으면 ㄹㅇ 재밌게 볼 듯
-
장르안가리고 적당히 재밌고 그림체만 좋으면 보는편 양산형도 잘 봄
-
술 마실 사람 2
-
1.수학 2.언매 3.과탐 개념기출. 지구 물리 책 산거 아까워서라도 뭔가...
-
학교 일찍가서 추운 날씨에 라면하나 딱 먹고싶은데
-
심심해 외로워 8
연애하고싶어 근데 돈아까워 하기싫어 근데 할 사람도 없어 난 병신이야.
-
#~# 8
등급컷이 뭔지 모르겠지만 그냥 헛소리는...
-
원인있음의사난수 발생 원인없음진성난수 발생 따라서 현실세계의 제1원인은 진성난수...
-
기하 3
-
남자다운 게이는 거부감 별로 안 들 듯 근데 막 화장하고 여성스럽고 그러면...
-
일부 여대들이 학령인구 감소,재정위기?로 공학 전환하고 싶다 하는데 남녀공학되면...
-
소주 2병째 18
커하찍었다 ㅅㅂ ㅋㅋㅋㅋ 다 ㄷㅁ벼
-
저는 예비고3이고요, 많은 사람들이 수능은 재능의 영역이고 노력으로는 한계가 있다고...
-
불연속 이유 다른거는 좌극한 우극한이 같고 함숫값 다른거 하나랑 좌극한 우극한...
-
화장해본 남르비분들 18
있음?
-
남자 둘이 와서 술먹는데 한명은 화장좀 하고 목소리나 행동이 좀 여성스러움...
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
이거 교과서에 있음? 논술에 써도 되는 지 궁금함.
-
화학 수험생과 지구 수험생 모두 행복했을까?
-
재미있어요~
-
으아아악 살려주세요 저는증원에찬성안했어요 으아악 외치면 원장선생님 개빵터지심
-
애니볼건데 6
밀린게너무많아서 머부터봐야할지 모르겟슴
-
반수생인데 학교 대충 다니긴 함 학교생활 ㅈㄴ 안 하긴 했는데 그래도 그럭저럭...
-
긍정적으로 360일 보내기 1일차 이왕 1년 더 하는거 긍정적 마인드로 공부하기...
-
진짜 좋은듯 짜투리 시간에 오르비하면서 몇시간씩 안써도 되고 보는동안도 재밌음 일단...
-
의외로 서강대가 젤 쉽게 느껴졌고 건국대는 2번 문제가, 경희대는 걍 두 문제 전부 어려웠삼....
-
물론 있었는데 숨겨서 몰랐던 거겠지만 아무튼 없음
-
https://www.instagram.com/p/DCgxE1yzgNO/?img_in...
-
할수 있어요?
-
막차 타보신분 0
전 2번타봄 7시간 9시간 가출했을때
-
기억나시는분 있나
-
INPUT: 24 미적분 3등급 70점대 FUNCTION: 기하런 OUTPUT:...
-
물리 선택하는건 별개임? 미적분은 백분위 99,100인데 탐구를 못해서
npc 하이
사문의 마법사다
문제풀이과정까지 정말 감사합니다. 유독 취약한 문제유형중 하나가 함수와 도형부분입니다. 이런 도형문제 접하면 기본이 20분정도 뚫어져라 보다가 겨우풀이 시작하는 수준에서 시작하게 되는 제 자신..(..)
몇가지 원칙만 확실히 잡아두면 도형문제는 기계적인 반응으로 풀어낼 수 있어요~ 도형 잡는것이 함수보다 훨씬 쉽습니다.
저같이 수학에 매우 취약한 사람도 수강신청해도 이해할 수 있을지요..?(...)
[[특강]아름다운 시작 (이벤트 마감)] https://orbi.kr/00033842790
도형과 함수에 대한 기초특강 추천합니다.
두 삼각형 BDE와 ABC가 닮음인 걸 확인하는 논리가 무엇인가요?.?
해설 정말 감명깊게 읽었습니다..!
제가 제대로 가고 있구나 확인할 수 있었고요
굿굿!! 각A와 마주보는 각인 CDE의 합이 180도이기 때문에 각A=각BDE 가 된답니다.
이렇게 보는게 맞는거였네요
다음에 기회가 있다면 쌤 수열특강 들어보고싶습니당
수열을 심플하게 보는 눈을 기르고싶어서요..!
<16416-수학1> 수업을 들어보세요~
수열과 도형, 삼각함수 그래프까지 심플하게 정리합니다저문제 현장에서 첨봤을때 뭐지 싶었던..ㅋㅋ
충격적이었죠. 사실상 오답률 1위였던.
원 내접 사각형 성질이 핵심!
굿굿!
아 ㅋㅋ 승효쌤이 내 프로필에 Y 달아줬다고 ㅋㅋ
ㅋㅋㅋ.ㅋㅋㅋ.ㅋㅋㅋ 반갑다
조만간에 보자
교재는 따로 없나용?
라이브는 밴드에서 pdf로 올라가고, 현장에서는 프린트로 나갑니다~
라이브말고 녹화해둔걸 비용지불하고 볼수는 없을까요?