흥미글) 7월 언매 38번 문항이 이상하다
게시글 주소: https://test.orbi.kr/00038522397
안녕하세요? 강교사입니다.
원래 7월 언매 분석글과 38번 문항의 미심쩍은 부분을 함께 지적하는 글을 올렸었는데, 아무래도 분석글이라고 하기엔 그냥 해설만 제시한 것 같아 너무 조잡하고 허접한 글이 된 것 같아 이전 글은 내리고 38번 문항에 대한 의문만 남깁니다.
사실 진지한 의미의 이의제기는 아닙니다. 애초에 7월 교육청 시험이기도 하고 출제자의 입장을 추론해보자면 그것도 역시 그럴듯합니다. 그렇기 때문에 제목에 흥미글이라고 써둔 것이구요.
바로 3번 선지 때문입니다.
오답률 57%를 기록한 문제이며, 문법 문항에서는 가장 높은 오답률이었습니다. EBSi 기준 오답률이므로 실제 오답률은 더 높을 것으로 추정됩니다.
'가지다'와 '갖다'는 본말과 준말의 관계에 있습니다. 그에 따라 <보기>의 '내디디다/내딛다, 서투르다/서툴다' 등은 모두 앞말이 본말, 뒷말이 준말입니다.
이때 <보기>에서 제시한 가장 중요한 조건은 '모음으로 시작하는 어미가 연결될 때에는 준말의 활용형을 인정하지 않기 때문이다'입니다.
여기서 모음으로 시작하는 어미란, 쉽게 말해서 ㅇ으로 시작하는 어미라고 생각하면 됩니다. '-었-' 같은 녀석이죠.
1번 선지를 보겠습니다. 밑줄 친 용언은 '내딛었다'입니다. 어디까지가 어간이고 어디까지가 어미인가 하니 '내딛-'까지가 어간입니다. 그 뒤로는 어미입니다. 이때, '내딛-'은 '내디디다'와 '내딛다' 중에 어디의 어간일까요?
'내딛다'의 어간입니다. 준말인 '내딛다'의 어간 '내딛-'에 모음으로 시작하는 어미 '-었-'이 결합한 것이죠.
<보기>의 조건에 위배되기 때문에 정답이 됩니다.
2번, 4번, 5번 선지는 어간과 어미로 용언을 나누었을 때 모두 본말에서 온 것임을 쉽게 확인할 수 있습니다.
가장 매력적인 오답이었던 3번 선지를 보겠습니다.
'머물면서'의 어간은 분명 '머물-'입니다.
어? 그러면 이것은 준말을 활용한 것이 아닌가요?
맞습니다. 준말을 활용한 것이 맞지만 뒤에 결합한 어미를 잘 보셔야 합니다.
'-면서'가 결합했습니다. '-면서'는 무엇으로 시작하는 어미인가요?
자음 'ㅁ'으로 시작하는 어미입니다. 따라서 <보기>의 제약에 걸리지 않습니다.
지금부터는 음모론입니다.
이렇게 생각해볼 수도 있습니다.
원래 '-면서'는 '-(으)면서'입니다. 앞말이 자음으로 끝나냐 모음으로 끝나냐에 따라 달리 결합합니다.
앞말이 자음으로 끝나는 '먹다'의 경우에는 '먹으면서'가 됩니다.
앞말이 모음으로 끝나는 '가다'의 경우에는 '가면서'가 됩니다.
그렇다면 '머물다'는요?
'머물다'는 앞말이 자음으로 끝나기 때문에 '머물으면서'가 되어야 합니다.
그런데 모음 'ㅡ'는 어간의 단모음과 연쇄되거나 'ㄹ'과 인접할 경우 탈락합니다.
보통 학교 문법, 시중의 교재, 참고서 등에서는 'ㅡ' 탈락을 용언의 어간 끝 모음 'ㅡ'가 '-아/어'로 시작하는 어미 앞에서 탈락하는 현상으로 정의합니다.
하지만 사실은 'ㄹ' 역시 가장 모음성이 강한 자음이므로 모음처럼 취급하여 'ㅡ' 탈락이 일어나는 것입니다.
사실 이 문제를 보고 'ㅡ' 탈락이 어간 말 'ㄹ' 뒤에서 탈락한다는 사실을 학습자가 미리 알아야만 풀 수 있는 문제로 의도한 것인가 하는 생각이 들었습니다.
이 문제는 논란의 여지가 있어보입니다. 수능 문제였다면 논란이 되지 않았을까 싶습니다.
만약 첫번째 설명대로 '머물-'에 '-면서'가 결합된 것이라면 왜 '먹다'에는 '-으면서'가 결합하는지 설명되지 않습니다.
두번째 설명대로 '머물-'에 '-으면서'가 결합하고 나서 'ㅡ'가 탈락한 것이라면 이것은 준말에 모음으로 시작하는 어미가 결합되지 않은 것으로 볼 수 있을까요? 일단 모음으로 시작하는 어미 '-으면서'가 결합한 후에 'ㅡ'가 탈락한 것이므로 <보기>의 설명이 잘못된 것이 됩니다.
아마 이의제기를 할 경우에 돌아올 답은 다음과 같을 겁니다.
"우리는 '표준국어대사전'을 참고하였다."
표준국어대사전의 '-으니'는
이렇게 나와있습니다.
물론 매개모음 '으'는 기본적으로 'ㄹ' 뒤에서 나타나지 않는 것이 맞습니다. 다만, 나타나지 않는 이유를 설명하기 위해서는 'ㅡ' 탈락의 개념이 들어와야 합니다. 아무 근거 없이 '-으면서'는 자음 뒤에 결합하지만 'ㄹ'만은 예외라고 하는 것보다 모든 자음 뒤에서 '-으면서'가 결합하지만 'ㄹ' 뒤에서는 'ㅡ' 탈락을 겪어 나타나지 않는다고 보는 것이 문법적으로 더 합리적이고 자연스러운 설명이 됩니다.
매개모음 '으'가 'ㄹ' 뒤에서 나타나지 않는 현상을 설명하는 방식으로 제시하는 'ㅡ' 탈락이 소수설이 아니기 때문에 논란이 될 수 있습니다. 다수의 문법서에서는 '흔들+으니'가 '흔드니'로 되는 것에 대해 'ㅡ' 탈락으로 설명합니다.
표준국어대사전을 참고하여 '머물-'에 '-면서'가 결합한다는 관점 역시 하나의 견해로 인정받는 관점이므로 틀린 것은 아닙니다만 두 가지의 관점이 대등하게 양립할 수 있는 현 시점에서 이 문항은 논란의 여지가 있다고 하겠습니다.
또한, '-으면서'와 '-면서'를 이형태라고 보았을 때, 어떤 것을 원형으로 삼는 것이 더 자연스러운가라고 한다면 당연히 '-으면서'를 원형으로 잡는 것이 타당합니다.
'ㅡ'가 'ㄹ'이나 단모음과 연쇄될 때 탈락한다는 음운 규칙이 있기 때문이죠.
그에 비해 '-면서'를 원형으로 잡을 경우 'ㅡ'의 첨가를 자연스럽게 설명하기가 어렵습니다. 그저 매개모음이라는 이름을 가지고 자음충돌을 막는다는 근거 하나로 갑자기 등장할 뿐이며 이마저도 'ㅡ' 탈락보다 설득력이 떨어집니다.
지금까지 음모론이었습니다. 사실 답을 고르는데에는 큰 영향을 주지 않았습니다. 다만, 저는 상술한 내용 때문에 3번 선지에서 잠깐 멈추게 되었습니다. 문법적인 이견이 충분히 존재하는 이론에 대한 선지이기 때문에 충분히 논란이 될 수 있다는 의견입니다. 3번이 오답인 이유를 <보기>에 근거해서는 찾을 수 없기 때문이죠.
38번 문항에 대한 의문점 제기는 사실 어떻게든 방어할 수 있는 부분입니다. 문법 이론에 대한 견해 차이로 발생한 것이므로 표준국어대사전이라는 명확한 기준이 존재하는 이상은 문제에 이상이 있다는 결론이 나올 가능성이 대단히 낮습니다.
그냥 이런 견해도 있구나 하면서 흥미글로 취급해주시면 되겠습니다.
다들 7월 시험 보느라 고생 많으셨습니다.
9월 시험에서도 좋은 결과가 있기를 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
도영쌤은 이번년도 초에 듣다가 (매트릭스인가 그거 할때 들어갔는데 그땐 다인자랑...
-
가망없나..ㅋㅋ
-
계약학과 될까요??
-
499.83에서 502.5됨
-
정석민 김범준+후반기 서바 박선우+서바 이신혁 풀커리
-
은 불 물 뭐가더 유리해요.
-
어차피 나중에 또 많이 바뀔 거 아는데도 진학사 업뎃 너무 보고 싶음... 무슨 중독인갘ㅋㅋㅋㅋ
-
깔끔히 포기
-
삼수는 절대 안할거
-
주변에 15-16점 오른 분들이 꽤 많아서 하..
-
성대랑 경희대면…못난자식이라 미안해
-
성대로 옆그레이드하긴 싫고 수능 한번 더하기도 싫고 복학도 싫고 저 뭐해야죠?
-
중고등학생 우정 관련 인식 조사 (경품!) 오늘까지! 0
참여율이 높지 않습니다! 경품 받을 확률 up! 안녕하세요! 이번에 학교에서...
-
원래 이과기준 496.71 이었는데 500.07로 올랐습니다. 근데 다들 이렇게 오른건 아니겠죠?
-
서사갈래 작품 속에 숨겨진 과학 기술 탐구하기 있는데 SF 영화는 안 된다고...
-
600년전통의 근본대학인데 과탐가산5퍼 해주겠지 국수만 보면 중경외시 가야할 사탐런한애들이 어딜넘봐
-
부자가 될 거야
-
착하거나 재밌거나 둘 중 하나 착한데 재밌기까지 하면 바로 팔로우
-
그니까 이게 서강대 한양대 엄청난 수혜자다 이거지? 11
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
서강대식 0
서강대식 이과 504.97 문과 504.66 어디까지 될까요
-
고대는불변줬으면 3
백분위100맛좀보자 ㅋㅋ
-
화 미 영 물1 지1 86 96 1 83 94 스나 어디로 갈길만한가요
-
아주대 2명 뽑는데 최초합발표 때 14번받았어요. 1차 추합 때 13번 받고 2차...
-
국,수 1등급 언저리 + 과탐 높2 ~1등급 언저리의 두루두루 애매한 인원들이 최대...
-
진짜 모의고사나 수능처럼 뽑는법 없나요
-
과탐 생윤사문런은 많이보이는데 윤사는 철학을 특별히 좋아해야 점슈가 나오나 암기량...
-
하...
-
20명 뽑는 학과면 붙을확률 몇퍼정도로 보시나요
-
등비수열 문제 하나 더 (1/x 적분할 줄 알아야 함) 0
참고로 e는 x가 한없이 커질 때 (1+x)의 1/x제곱의 극한입니다.
-
군수를 할 생각입니다. 국어 수학은 어느 정도 길이 잡히는데 탐구에서 둘다 사탐을...
-
어디까지 될까요
-
노예비 추합 0
예비 10번까지 부여한다 쳤을 때 제가 11번이었으면 1,2,3명 빠지면 홈페이지에...
-
최초합 안정카드 하나 쓰려고하는데 다 미래 없어보임 ㅋㅋㅋㅋ 하나 굳이 한다면...
-
지금 쥰나 예민함. 머라도 해야겠음.
-
습한 날만 되면 간간히 계속 따갑네요 병원 가 봐야 하나... 흉터 생긴 것도 속상한데 하
-
보는게 맞죠? 지구때문에 평백은 형편없는데
-
헉
-
95 100 인데 물변 불변중에 어떤 게 유리할까요?
-
올해는 이 과목 잘본사람을 더 뽑고싶구나 하면 걍 그렇게 올리는건가
-
서강대식 499.94 12
어디까지 되나요 이번 수능 서성한은 나의 승리인가
-
슬슬 의미 있나요?
-
님들 점심 머드셨나요 15
전 맘터 다녀왔습니다
-
일반고 정시 7
일반고 2점 후반인데 그냥 정시하는게 맞을까요? 교과세특도 다른애들보다 많이...
-
현역 54363(생지) 재수 33232 삼수 3합 5 가능 할까요…. 하 진짜...
-
사탐런 꿀팁 2
자기가 애매모호한거 싫어하는 이과형 머리라면 절대 윤리를 선택하지 말 것...
-
ㅇㅂㄱ 5
-
사탐 2컷 쉽? 2
-
내 멍청한 머리로 최고의 성적을 뽑은 거 아니냐구요...... 진짜 국수 백분위...
글 잘 읽었습니다. 글 다 읽고 질문이 있는데요. 관형사형 전성어미 '-(으)ㄴ'은 '-은'이 원형이라고 생각하시나요 '-ㄴ'이 원형이라고 생각하시나요??
오늘날의 문법 연구에서는 둘 중 하나를 기본형이라고 잡고 있지는 않으나 굳이 따진다면 매개모음 '으'가 들어간 형태를 기본으로 하는 것이 문법 현상의 설명에 있어서 더 자연스럽습니다. 관형사형 전성어미 '-(으)ㄴ' 역시 마찬가지입니다.
먹+은=먹은
가+은=간 (단모음 간의 연쇄로 인한 'ㅡ' 탈락)
알+은=안 ('ㄹ'과 인접하여 발생하는 'ㅡ' 탈락 후 치조음 'ㄴ' 앞에서의 'ㄹ' 탈락)
위 단어들은 일반적으로 이렇게 설명합니다. '-ㄴ'을 기본형으로 삼으면 'ㅡ'의 첨가 근거를 설명하기가 어렵기 때문입니다. 더불어 '매개모음'이라는 개념 또한 요즘의 문법 연구 경향에서는 사실 희미해지고 있기도 하구요.