[수학의 기준] 기출을 통해 무엇을 배워야 할까
게시글 주소: https://test.orbi.kr/0004406482
기출문제를 제대로 활용하는 방법..
교과 과정의 기본 개념에 따라
어느 시험이든 기출문제를 분석하는 것은 가장 효과적인 공부 방법 중의 하나입니다.
그 시험의 성격을 가장 잘 파악할 수 있는 수단이 바로 기출 문제이기 때문이지요. 물론 수능시험도 예외는 아닙니다.
그렇다면 대학수학능력시험의 수학영역은 대체 어떤 능력을 측정하려는 시험일까요?
평가원의 출제 매뉴얼에 따르면 수학(수리)영역의 시험의 성격은‘고등학교까지의 수학 학습에서 배운 기본 개념·원리·법칙을 이해하고 이를 적용하여 문제를 해결하는 능력을 평가하는 것’입니다.
너무도 당연한 얘기로 들리겠지만, 실제로 수능시험장에서 이러한 시험의 성격을 당연하게 받아들이고 실천에 옮기는 학생은 그리 많지 않습니다.
정말로 교과 과정에서 배운 기본 개념·원리·법칙을 이해하고 적용할 줄만 알면 모든 문제가 풀린다는 데 대한 확신이 없기 때문입니다.
우리가 기출문제를 통해 반드시 확인해야 하는 것이 바로 여기에 대한 확신입니다.
-‘내가 배우고 이해한 내용만으로 정말 문제들이 다 풀리는구나!’
이러한 확신이 없이 문제를 풀다 보면 막히는 부분이 나올 때마다 내가 아직 배우지 못한 뭔가 새로운 내용을 적용해야 되는 것이 아닌지 자꾸 의심이 들게 됩니다.
그리고 그것을 찾아내려고 새로운 고민을 하게 되면 문제가 요구하는 방향과는 더더욱 멀어지기가 쉽지요.
따라서 기출문제를 공부할 때는 우선적으로 풀이의 근거가 모두 교과 과정의 기본 개념과 원리에 담겨 있는 지를 꼭 확인해 볼 필요가 있습니다.
물론 자신이 이해하고 있는 기본 개념의 범위가 교과 과정보다 더 넓다면 거기에 기준을 맞추면 되지만, 가능하면 문제 해결에 필요한 내용을 최소화시키는 것이 대다수의 학생들에게는 훨씬 유리합니다.
확신이 들지 않는 경우에는
그런데 풀이의 근거를 하나하나 점검하다 보면 이것이 과연 교과 과정의 개념만으로 해결이 가능한 것인지 의문이 생기는 경우가 종종 발생하게 됩니다.
그 대표적인 예로 2011학년도 9월 평가원 문항(그 이름도 유명한 스티커 문제)을 들 수 있습니다.
(가능하면 설명을 보기 전에 문제를 잠시라도 풀어보시기 바랍니다)
2011학년도 9월 평가원
주머니 안에 스티커가 1개, 2개, 3개 붙어 있는 카드가 각각 1장씩 들어 있다. 주머니에서 임의로 카드 1장을 꺼내어 스티커 1개를 더 붙인 후 다시 주머니에 넣는 시행을 반복한다. 주머니 안의 각 카드에 붙어 있는 스티커의 개수를 3으로 나눈 나머지가 모두 같아지는 사건을 A라 하자.
시행을 6번 하였을 때, 1회부터 5회까지는 사건 A가 일어나지 않고, 6회에서 사건 A가 일어날 확률을 구하시오.
문제를 읽어 보니, 자칫하면 1회부터 6회까지의 모든 경우의 수(총 729가지)를 다 헤아려 봐야할 것 같군요. 하지만 문제당 평균 3분 정도의 풀이 시간을 요구하는 시험, 그것도 수학시험에서 그런 것을 요구할 리는 없습니다.
일단은 사건 A가 일어나는 어떤 규칙성이 존재한다는 가정 하에 접근하는 것이 바람직합니다. (사실 이러한 가정은 모든 수학적인 법칙의 대전제와도 같으며, 고교 과정에서는 특히 수열 단원에서 그 원리를 자주 접하게 됩니다.)
그렇다면 사건 A가 일어나는 경우부터 조사해 봅시다.
이때, 사건 A는 각 카드에 붙어 있는 스티커의 개수가 아니라 그것을 3으로 나눈 나머지에 따라 결정되므로 카드에 붙어 있는 스티커의 개수는 사건 A의 결정요소인 나머지만으로 표현하겠습니다.
즉, 카드0 은 카드에 붙어 있는 스티커의 개수를 3으로 나눈 나머지가 0이고, 카드1 은 카드에 붙어 있는 스티커의 개수를 3으로 나눈 나머지가 1임을 뜻합니다.
사건 A가 일어나는 경우는 아래와 같이 시행 후에 모두 카드1이 되거나 모두 카드2 또는 모두 카드0이 되는 세 가지밖에 없습니다.
그런데 보이는 바와 같이 처음 (카드1,카드2,카드0)의 상태에서 사건 A가 일어나기 위해서는 반드시 3장의 카드가 필요합니다.(규칙성을 찾았습니다!!)
따라서 1회와 2회의 시행에서는 절대 사건 A가 일어날 수 없으며, 3회의 시행 후 사건 A가 일어날 확률은 세 문자 +1, +1, +1 중 두 개를 세 카드 중 하나에 배열하는 방법의 수와 같습니다. (계산 과정은 생략)
∴ P(A)=1/3
그러므로 3회의 시행에서 사건 A가 일어나지 않을 확률은
P(A^C)=2/3
이때, 3회의 시행 후 사건 A가 일어나지 않는 경우는 아래와 같이 3개의 스티커를 모두 다른 카드에 붙이거나 모두 같은 카드에 붙이는 두 가지밖에 없습니다.
따라서 3회의 시행에서 사건 A가 일어나지 않으면, 세 장의 카드는 3으로 나눈 나머지가 다시 처음 (카드1,카드2,카드0)의 상태와 같아집니다.
결국, 5회까지 사건 A가 일어나지 않고, 6회에서 사건 A가 일어날 확률은 3회까지 사건 A가 일어나지 않고 그 이후의 3회에서 사건 A가 일어날 확률과 같습니다.
∴ P=P(A)×P(A^C)=(2/3)×(1/3)=2/9
결론적으로 문제에서 묻고 있는 시행은 확률이 일정한 독립시행이었던 것입니다.
(교과 과정에서 여러 번의 시행을 반복했을 때의 확률에 대한 개념이 독립시행의 확률밖에 없음을 알고 있었다면 조금 더 접근하기가 수월했을 것입니다.)
주어진 상황을 그것을 결정하는 요소(변수)로 표현하려는 것은 수열의 일반항을 찾거나 방정식(또는 함수)을 구성할 때 매번 다뤄지는 원리이며(지난칼럼 '개념을 효과적으로 공부하는 방법' 참조), 자연수를 특정한 수로 나눈 나머지에 따라 분류하는 것 역시 짝수와 홀수의 개념을 정확히 이해하고 있다면 전혀 새로울 것이 없는 내용입니다.
(이와 같이 여러 단원의 개념들이 통합되어 풀이의 근거를 혼자의 힘으로 확인하기 어려운 문제에 대해서는 주변의 도움을 적극적으로 이용할 필요가 있습니다.)
기출분석의 관건은 내가 알고 있는 내용만으로 문제가 다 풀린다는 것을 '스스로 확인'하는 것이며, 여기에 대한 확신이 생겼을 때 수능에 대한 두려움은 대부분 사라질 것입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
우선 앱 깔았습니다 파티원 모집 1/10000
-
논술 면접 서비스 판매 많이 하려고 컷 낮게 잡는다는 거 만표 5점차면 걍 고의 아님?
-
생지 31이다 싱ㅂ
-
지금 미적이들 작년 미적이들의 상황을 당한건데 소수라 아무도 괸심이 없고 조리돌림...
-
나는 여기서 만족하겠다.
-
그리고 사탐런 없었으면 1컷 40임
-
아니 22학년도 지구1이랑 지금 표본이 달라도 너무다름 0
내가그때 백분위 99였는데 올해 지1 지금 2등급 뜨게생겼음 ㅋㅋㅋㅋ 이게 말이되나
-
전너무슬퍼요 0
엉엉
-
정신나간 성적표를 가지고있는 본인 ㅋㅋㅋㅋ 제발 고대 최저 맞추게 해주세요 이번...
-
공통 3틀인데
-
표점 백분위 싹다 운지햇노
-
지금 일어났는데 2
어케됨
-
의반들이 실지원을 그리 많이 하진 않을 것 같고 정시이월도 좀 나올 것 같은데
-
23수능때도 도수표보고 화작언매 3점차라고 좋아하다가 까보니까 대참사났었던거같음...
-
확통 81 0
공통-4확통-1 백분위 얼마 정도 나올까요…. 하ㅜ
-
미적 컷 0
만표 생각보다 낮다는데 그럼 2컷도 많이 올라가나요..? 80 생존 가능인가요;;;...
-
메디컬은 안정적이고 돈도 많이벌고 명예롭고 좋은 직장인건 맞는데 천국은 아닙니다...
-
정법 1번틀려옴 시험지4>가채3 제발가채실수일가능성은없을까요?마킹실수가정배임?1번이라?
-
땅구르기좀
-
안 고인 과목이 없는데 이게 무슨 일임? 왜 허수가 없음?
-
이 미친 메디컬놈들
-
논술팔아먹을려고 그러는거지 뭐 더있노 ㅋ
-
.
-
개인적으로 후자가 훨씬 어렵다고 생각하는데 뭐가 더 어려운가요
-
그냥 찌라시 표 보고 추측한거죠??????? 진짜 제발.
-
의치한 반수러 특히 의반들 영향이 커서 sky 약수 구간부터는 수시 최저떨 이월 +...
-
지금 백분위 터졌다고 너무 걱정하실 필요가 없는게 12
결국 1컷 이지경이 난건 의대 반수생 영향이 크다고 봐요 저만 해도 작년에도 정시로...
-
메가 1
지구 지금 다시 보니까 어이가 없네
-
제곧내
-
진짜 아무데도 안될까요
-
'기하 개꿀통이다'
-
나 핑프니까 빨리
-
다들 울고있길래..
-
오르비 검색해보고 놀라서 컷 등급컷 이런식으로 검색해보는데 그 직접적인 링크를 못...
-
12211만 뜨면 안 죽고 살아볼게 13212는 안 된다
-
이렇게 쉬운 시험에서도 만점을 못 받는데... 만점을 받지 못하면 가르치는 걸...
-
라인좀요 5
언 131 백96 미 134 백98 영 2 물1 67 백99 지1 70 백99...
-
ㅅㅂ
-
일단 본인 주변 물리러들은 그래도 물리에 쏟은 시간이 얼만데 물리는 해야제 하면서...
-
마킹 제대로 됐을거라 믿어
-
이거보다 딥하게 내면 공부하고자 하는 의지가 없어지는데 어캄뇨
-
하지말라고
-
링크좀
-
화작러 호재 미적러 개씹좆망이네 아ㅋㅋㅋㅋ 이거 상쇄되냐
-
도수분포표 0
도대테 도수분포표 어디에 올라와있는건가요?
-
생지 47 45 1
98 98인가요?
-
찌라시 6
사문 44 1등급각인데요?
-
최상위에서 버려지는 표본이 어느정도일까 업글 아니면 버릴텐데
ㅋㅋ 저 문제를 직접 시험장에서 만나본 사람들은 확률문제가 진짜 두려웠었죠... 저때 저문제를 맞춘 친구는 9월 2일이라서 11로 찍었었는데 맞췄는데...
수학자들이 즐겨하는 장난?이긴 하지만... 어쨌든 대단한 직관의 소유자로군요~
9+2=11!!
좋아요
교과과정기본개념.오늘 수비공부하는대많이중요하더군요
죄송한데 2010 나 형 25번도 알려주시면 안되나요??ㅜ 홀 수 번째랑 짝수번째 규칙이 있는건 알겠는데 무엇을 원하는건지 도통 보이지가 않습니다 ㅜ 그냥 노가다로 구하면 답이 나오긴 하는데 ㅜ
그 문제 역시 교과 과정의 기본 개념을 이용하면 가장 효율적이고 정확한 방법으로 접근할 수 있답니다!
힌트를 드리자면 대칭성을 이용하는 것입니다. 그러면 왜 홀수번째와 짝수번째의 차이를 묻고 있는지 명확히 이해할 수 있습니다..
댓글남기고갑니다
잘보고갑니다 ^^
잘보고갑니다 ^^
잘보고갑니다 ^^
좋은글감사드려요!
감사합니다