동생 수학수행평가 문제에 오류있는지좀..
게시글 주소: https://test.orbi.kr/0004912173
ㄷ에서 f(x)=x^2lnx 일 때, g(2루트e)=2
라고 쓰여져있는데요
동생 학교에서 ㄷ이 틀렸다고하는데
그이유가 x가 1/2 일때 f(x)=x^2lnx가 0이아니기때문에 가정이틀려서
답이아니다라고 하는데
"일 때"라는말이 앞의 식을 맞다고 전제하고푸는건데
ㄷ을 틀렸다고할수있는건지요?
보기ㄷ자체가 틀린게아닌가요
어떻게 학교에 항의할수없을까요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
멱급수 1
시그마 n•2^n
-
백분위나 표점 뻥튀기되는건 눈속임이고 결국 한정된 대학정원을 나눠먹어야되는데...
-
군수생 달린다 2
고고곡
-
중딩때 개소리, 지배 매체로 여기고 방구석에 박아놨는데 왠지 꺼내서 읽어야 할 것...
-
07이 황금돼지띠라는데 10
아 갑자기 돼지고기 땡김
-
02 03 이때랑 비슷하네여 01보다는 차이나게 작고
-
언매 미적 영어 과탐 과탐 작년 99 99 3 96 95 올해 93 99 2 99...
-
주변에 되게 많던데
-
수시 항에 광명상간데 딱 그정도? 농어촌 있긴 해요. 에효 지1 개말아가지고
-
많이 늦을까요?
-
기말끝나고 12월 둘째주부터 뉴런 시작할건데 뭐 듣는게 맞을까요? 25뉴런 강의는...
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
광명상가일까요?
-
언제부터였을까.. ...?
-
언. 미. 영. 물. 지 86 85 98 36 35 1년 노베상태로 시험봤네요 ㅜㅜ...
-
현역 머릿수 뻥튀기 ㅋㅋ
-
이제 09 태그 생기고 나중에 10 태그 생기면 진짜 현타 올 듯 2
나도 틀딱이 되는 건가 맨날 05 04 03 ~ 99 형님들 놀렸는데
-
신기하네요
-
국어 법지문 문항공모해볼까하는데 이거 서바 셤지에만 들어가는거임? 아니면 무슨 다른...
-
???:탐구를 고1 과목으로만 본다고? 럭키비키잔앙
-
진짜 개 뻘글일수도 있고.. 타이밍 자체가 좀 안 맞지만 3일뒤에 부모님 결혼기념일...
-
아주,인하 2
가능한가요??
-
커리 어캐 타심? 일단 취미로시작하는거긴한데
-
이런 ㅋㅋ
-
차라리 지1끼고 2과목하나끼는거어떻게생각함?? 24시즌전처럼 도박인가
-
ㄹㅇ 궁금해서 그런건데 애초에 등급별 인원도 비례해서 많아질꺼고 그럼 대학 입결… 도 높아지겠구나
-
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
1등급이나 만점권 점수 버리고 사탐런 할 정돈 절대 아님... 국수 하세요 그시간에 ㅠㅠ
-
오르비 유입이 늘어날수가...
-
현시점 물지가 최선인가요 생지가 최선인가요?
-
한지 세지 세사 동사 빼고 사문 고정 생윤 윤사 정법 경제 남은거 같은데 사문...
-
기하 vs 확통 5
확통 김기현 idea랑 기출생각집 했는데 이번수능 27,28,29,30 틀렸으면 기하런이 맞을가요?
-
서울대식 1
406.xx면 첨단 될까요...?
-
2019학년도 고려대 정시 영어교육과 빵구 난거 합격 한 사람 아는 누나 였음 2
그 누나 인스타 스토리 보니까 합격 포기하고 여행 갔던데 여행지에서 고려대 결과...
-
친누나 이대인데 0
저번엔 학교에서 디올이랑 패션쇼하더니 이번엔 에르메스에서 채용설명회 오네
-
그냥 의대 정원+황금돼지띠 인원 하면 대학 1개 급간 정도라 최악의 경우에 건동홍 갈거 국숭세단 간다 생각하고 준비해야겠다 0
이렇게 생각 안하면 정신병 걸리겠네
-
23수능 국어 25수능 국어 뭐가 더 어려웠다고 생각하시나요? 2
문학 고려하면 25같긴한데…
-
사탐런 과목 4
올해 수능본 06인데 재수하려고합니다. 올해 물리 50 맞았는데 내년에는 도저히...
-
유입 비율이 좀 준 거 같다는 느낌이
-
공대랑 약대랑 수리논술은 같은 시험지로 치는거임?
-
기하선택인데 본인의 처참한 도형실력을 깨닫고 지금 쎈 미적 벅벅풀구이씀 일단...
-
수학 (미,기) 과탐 두과목 평균 이 두 개 필수 포함+ 국영 중 하나 택으로...
-
특히대학생이나수험생이잡아쥬는거ㄹㅇ.. 걍노셈뇨..
-
ㅈㄱㄴ
-
동덕여대 최대 피해액으로 언플하는데 그런식이면 연대도 수험생수X700만원해서 그걸로...
-
생명 40 0
2뜰 가능성은 이제 없을까..
-
언 미 화 지 97 (95) 98 (92) 1 98? (50) 98? (44) 진짜개대충이라도ㄱㄱ
-
건논 답 0
1. pi/3< <pi*5/3 2.7/9 3.-루트21/7 4. 19, 9, 29/5
-
제일 재밌음 ㅋㅋ 빨리 성적표 나와라
가정이 틀리면 결론이 무슨말이든 상관없지 않나요'
그런데 저 ㄷ이 만약
f(1/2)=0이 아닐때, ~~~
이런보기라고 생각해보면
솔직히 맞다고보기도애매하고
틀리다고보기도어렵지않나요
ㄷ에서는 이게 0이아닌게 전제인거고
문제에서는 f(1/2)가 0 인게 전제인거니까요 이거랑똑같다고생각하는데
그냥 이건 문제자체의 오류라고생각하는데
어떻게생각하세요?
그러니까
A가 A가 아닐때, A가 A가 아니다
이게 맞냐틀리냐를물어보는건데
맞다고보기에도무리가있고
틀리다고 무리가있는것같은데
보기자제가틀린것같습니다
어떻게생각하시나요??
논리의 관점으로 보면 선생님 말씀이 맞다고 생각해요.
자세히 설명해주실수있으세요?
그리고 제가 위에 댓글 A 써놓은거 봐주시고
어떻게생각하시는지 듣고싶습니다
음.. 설명하려고 적다보니 제가 성급했다고 느껴집니다. ㄷ은 참이라고 봐야할 것 같아요.
문제에 주어진 조건을 p, ㄷ의 가정을 q, ㄷ의 결론을 r이라 하면, p는 참 q는 거짓이고, p→(q→r) 이 참인가 거짓인가를 가리는 문제가 되는데, q가 거짓이므로 q→r은 참이고 p와 (q→r)이 참이므로 p→(q→r) 도 참이 맞아요.
중2 고1 학생들 명제나갈때 재미삼아 가르치던 진리표인데.. 부끄럽네요ㅠ
그리고 위에 적은 말씀은 이해가 가질 않네요. A에 대응되는게 먼가요?
그러니까
문제의조건(a=a): p
a가a가아닐때:q
a가a가아니다:r
p는참 q는거짓 q☞r은참
이렇게볼수있을것같네요
근데 저거다시좀 자세히설명해주실수있으세요?
p☞(q☞r)이 왜참이되는지
설명은 저게 끝입니다만.. 진리집합을 넣어서 말할수도 있겠네요. p→(q→r)은 사실상 가정이 두 개 있는 셈이니, (p∧q)→r 과 같지요. 즉, 진리집합을 보았을 때, P∩Q는 공집합이므로 반드시 R에 포함되고, 따라서 참입니다.
음.. 아니면 진리표(truth table)나 명제논리학 등을 검색하시면 더 자세한 설명을 얻으실 수 있을 것 같아요.
와..신기하고 재밌네요
이런거 배우려면 어떤과를
들어가야배울수있나요?
아 그리고 질문이하나있는데
q☞r일때 의 참은
확실히거짓이라고 말할수없다(거짓이아님) 라는의미의참이잖아요?
그렇다면
p☞(q☞r)도 거짓이라고 말할수없다 이걸 명제에서 참이라고하잖아요?
근데 이 참이 확실히 맞다가아니라
거짓이아니다라는의미인데
확실히맞다라고할수없는거아닌가요?
보기를고를때는 확실히 맞을때 정답으로 인정하는거니까 ㄷ이 맞다고할수도없고 틀리다고할수도없는거아닌가요??
예를들자면 ㄷ이
지구가 네모난모양이면,수지는 나를좋아한다
이런보기일때
p:지구가 네모난모양이다
q:수지가 나를 좋아한다
p☞q는 참입니다만
ㄷ을 맞는보기로할수있는지요?
맞을수도있고 아닐수도있기때문에
저는 ㄷ보기는 잘못됬다고
생각합니다
그냥 참이 아니면 거짓이고 거짓이 아니면 참입니다. 애매모호한건 없어요ㅎㅎ
예로 드신 것도 지구가 네모난게 참이고 수지가 나를 좋아하는게 참이라면 참입니다. 지구가 네모난 모양이 아니라도 참이구요, 지구가 네모난 모양이지만 수지가 나를 좋아하지 않으면 거짓입니다.
아마.. 수학과 1학년이나 2학년 때 배우는 걸로 알고있어요. 전 오래돼서 기억이 잘...
아.. 만약 선생이 ㄷ의 가정이 틀렸다는걸 생각하고 문제를 낸거라면 위의 논리에의해 ㄷ을 포함해야만 답이고, 의식하지않고 문제를 낸거라면 조건이 틀린거니까 ㄷ의 선택여부에 관계없이 정답 혹은 전원정답 처리를 하는게 옳다고 생각합니다.
그러니까 제말은 제가 든예시에서
p는 거짓인 명제죠 지구는 둥그니까요
q도 거짓인 명제죠 수지는 절 안좋아하니까요..또르르
p-q (화살표표시 어떻게쓰죠?ㅋㅋ)는
p가 거짓인 명제이므로 참이라고 말하는건데
사실 이명제에서의 참은 거짓이 아님을 의미하는거잖아요 그러니까 거짓이라고 단정지어말할수없다 이런뜻인데
이것도 명제에서는 참이라고하죠
그러니까 명제에서의 참과 진짜 확실히 맞다의 의미가 조금 다르다고 얘기하는거에요
예를들면
다음중 옳은 보기를 모두 고르시오
ㄱ.~~
ㄴ.~~
ㄷ.AABB=ABAB이고 A의 역행렬이 존재하면,
AB=BA이다.
이런 보기가 있을때 이것은 거짓인명제라 ㄷ은 맞는답이 될수없죠
그런데 문제가 틀린보기!!를 모두고르시오 라고했을때
ㄷ은 거짓인 명제임에도 불구하고 답이될수없습니다.A=B=E이면 ㄷ은 맞으니까요
거짓인명제라고 틀린게 아니고 참인명제가 맞는게 아니라는 말을 하고싶었어요
동생수행평가에서의 ㄷ은 분명 참인명제가 맞습니다만 참인명제가 답이 될수있는게 아니잖아요
참인명제와 보기가 맞냐 이건 좀 의미가 다른것같다고 생각해요
글을못써서 전달이 이번엔 제대로 되었을런지..ㅋㅋ
에.. 그래서 논리의 관점에서라는 말을 쓰긴 했는데.. 글쎄요..
애초에 참 거짓 참도거짓도아닌것 으로 구분하시기때문에 아마 의견의 차이가 생긴거라고 보는데요.
참인 명제는 맞는말 거짓인 명제는 틀린말이지요.
적어주신 예도 틀린명제를 고르라고 한다면 당연히 골라야한다고 보고요.
지구가 네모난 모양이라면 수지가 남자라는 말도 참인명제, 옳은말이라고 생각해요.
이것은 회색은 검은색이 아니므로 흰색이라고 하는말이 아닙니다.
네 저도 틀린명제를고르라한다면 당연히 골라야한다고 생각합니다
하지만 저행렬문제에서
옳지않은것을고르시오 라고했을땐
ㄷ이 답이 될수없는건 확실하고
그러면 거짓인 명제 가 옳지않은것과 동일하지않다는 한예시가된것같은데
아닌가요?
행렬문제에서 옳지 않은 것을 고르시오 라고 하면 ㄷ은 답이 되겠지요.
서울시민 말씀하신건 거짓인 명제입니다. 모든 서울시민이 남자가 아니니까요. 따라서 옳지 않은, 틀린말이지요.
아 서울시민은 제가 아예잘못말했네요
더쓸말이많지만 재수생이라 더 시간내서 글은못쓸것같아요
튼간감사합니다~