벡터=좌표라고 생각하면 큰 낭패
게시글 주소: https://test.orbi.kr/00056751794
[기하 선택자(또는 수리논술대비)를 위한 칼럼]
기하, 즉 도형에서 가장 중요한 것은 점이에요.
모든 도형은 점으로 이루어져 있기 때문이죠.
도형에 대한 연구는 고대 그리스 시절부터 아주 활발했습니다.
직선, 각, 삼각형, 원 등 평면도형에 대한 대부분의 성질은
무려 2천년전에 “유클리드”님이 다 정리해 놓으셨다죠.
그런데 미친넘천재 유클리드도
정의하지 못한게 하나 있으니
그것은 바로 '점의 위치'입니다.
우리가 중학교때까지 배우는 도형들은 위치가 없죠.
그냥 어딘가에 있는 삼각형, 원 이렇게 배우잖아요.
고등학교 수학에서
점의 위치를 나타내는 방법을 두 가지 배우는데,
첫번째가 좌표로 점의 위치를 나타내기
두번째가 벡터(두두둥장)로 점의 위치를 나타내기
이 두가지는 아예 개념이 달라요.
그림으로 표현하면 아래와 같습니다.
1. 점의 위치를 x, y 좌표로 나타내는 방법
익숙하죠?
모든 점의 위치를 원점을 기준으로 생각하는 것이죠.
생각해서 존재하는 데카르트님이 좌표평면을 떠올렸다네요.
2. 점을 가리키는 벡터를 이용해서 나타내는 방법
원래 벡터는 위치가 아니라 크기와 방향으로만 정의가 되는데
모든 벡터의 시점을 통일시키기로 약속하면 한 점과 어떤 벡터는
반드시 일대일로 대응이 되는거죠.
이걸 점의 위치벡터라고 합니다.
따라서 그냥 위치벡터가 아니라,
점A의 위치벡터, 점B의 위치벡터인거에요.
그럼 좌표로 하면 되지 뭐하러 굳이 왜 벡터로 점의 위치를??
이라고 생각할 수도 있겠네요? 그 이유는 뭘까요?
벡터로 하는게 편한 경우가 있어서에요.
좌표로 점의 위치를 나타내면 원점을 기준으로 해서
점의 위치를 절대적인 값으로 나타냅니다.
그런데 점의 절대적인 위치를 알고 싶은게 아니라
이 점이 쟤랑 걔 사이에 정확히 중간에 있어.
아니면 얘는 쟤랑 거리가 몇이래.
이런걸 표현하고 싶다면? 굳이 좌표가 필요없어요.
점들 사이의 상대적인 위치만 있으면 되니까요.
이럴 때는 벡터가 훨씬 편하네요.
예) 점P는 점 A와 점 B의 중점이다.
이걸
이런 식으로 표현할 수는 없겠죠?
그런데
벡터로 표현하면
이렇게 표현을 할 수 있어요.
점은 연산이 안되지만 벡터는 연산이 되니까요.
직선이나 원 같은 도형의 방정식도
위치벡터로 나타내면 훨씬 편리하답니다.
물론 벡터의 용도는 여러분의 상상 이상으로 훨씬 더 많아요.
여러분이 즐겨하는 게임에서
벡터가 광범위하게 활용되기도 하죠.
그리고 대학에서 배우는 벡터는
평면기하와 별로 상관이 없는 추상적인 개념이고....
설명하자면 끝도 없는데
일단 평면벡터만 생각해서 예시를 들어봤어요.
[결론]
여러분이 기하 선택자라면 (그래서 읽고 있겠지만)
위치벡터의 개념부터 제대로 잡고 시작하세요.
만약 위치벡터를 이해 못하면,,,
갑자기 나오는 벡터에,,, 도대체 이걸 왜 배우는건지,,,
삼각형 평행사변형, 그림놀이 열심히 하다가
갑툭튀 등장하는 내분점 공식같은걸 보면서 이건 또 뭐지...
배운건데 왜 또 나오지.... 그러다가 준킬러님 두두둥장
하시면 손도 못대는 경우가 생겨요.
기하에서는 30번 레벨 벡터문제까지
반드시 맞추도록 대비해야겠죠?
그래야 미적분 선택자에게 불리하지 않으니까요.
벡터는 확실히 잡고 갑시다!
------
여기까지는 정보성,
아래부터는 잠시 상업성을 띠는 점 양해부탁드리며...
[수업안내]
올해 기하는 수능 대비 현강이 별로 없는 듯 해요~
그래서 6평 대비 수업을 합니다!!
장소는 대치동 디오르비! 시간은 목요일 6시반부터!!
현장강의 + 라이브 입니다.
6평대비 3주 특강 <16416-기하>
이번 수업으로 기하, 특히 벡터에 대한 감이
확실하게 잡힐 거라는거 자신있게 말씀드릴게요.
지난 수업은 복습영상으로 수강가능하고요.
이번 수업 교재 뿐만 아니라 개념교재도 무료로 드립니다.
그동안 대충 알고 있던 개념을 완벽히 정리하면서
킬러가 체계적으로 풀리도록 만들어 드리는 수업이에요.
신세계를 경험하고픈 기하러는 다들 오세요.
제가 책임지겠습니다.
[16416 수강신청 링크]
https://academy.orbi.kr/intro/teacher/252/l
기하의 기초
평면도형과 도형의 방정식을 총정리하는
<아름다운 시작 - 도형>도 강추입니다!
[이승효T 특강 수강신청 링크]
https://academy.orbi.kr/intro/teacher/256/l
문의 : 디오르비 02-522-0207
칼럼이 도움되셨다면 좋아요와 팔로우 부탁드릴게요.
상승효과 이승효였습니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅆㅂ 톰 마타 둘다 놓쳤노
-
수학 22 26 30을 다풀어놓고 실수땜에 11점을 날리기 진짜 정신병걸릴거같다.....
-
과탐 2개셨던 분들 -> 사탐 하나 낄 의향 다들 있나요
-
재종 장점 2
재종다니면 어떤점에서 좋은가요? 내년에 수능을 볼 것 같은데 독학할지 재종갈지 고민되네요.
-
경제 사문 만표 73 기원 ㅋㅋ
-
놀랍구만
-
맞팔구 4
잡담태그 잘 다는 사람만 구해요
-
1너무많이 나와서 멘탈 박살남 ㅋㅋㅋㅋ
-
동사 1컷 48이면 진짜 고인거임 하지마셈요 무조건 일반사회해
-
제발
-
대학 있나? 스카이 서성한에서 고대 인문계열은 과탐 가산점 주나?
-
진짜 ㅈ고인것같은데
-
수능때 2틀해서 45 ㅅㅂ 하
-
남자고 키 187cm 82kg면 돼지임??? 헬스하는 몸이고 체지방률...
-
경북대 수의예 0
논술 걍 가지말까? 붙여주면 기어가긴 하는데 3명 뽑기만 하는데 컷 ㅈㄴ 높을듯...
-
거의 과탐급임 ㄹㅇ
-
ㅇㅇ
-
건물 짓기 5
-
그 흔한 거짓말도 못하고
-
그럼 논술 환불해야 하는데
-
내가 많은 걸 바라지 않아요..
-
절대 더이상 꿀통이 아님 지리역사대비 메릿 x
-
저 최저 맞추ㅠ야 해요…
-
다들 점심 뭐드셨어요? 11
저는유부전골과 오랜만에맥주먹었어요 다들맛점
-
내신 1.8~1.9정도 고대 교과 전형 안되겠죠?
-
다른길도 한번 고민해봐라 하는말에 뭐 서강뱃달면 입조심해라 리스크가있는데 왜말을...
-
씹덕ㅇㅈ 14
-
고대 낮 vs 성대 높 11
문과 기준 원하는 진로 상경계열이에요!
-
애슐리 ㅇㅈ 12
맛점하세요
-
한양대 인터칼리지 인문논술 가야할까요 (정시 성적) 2
이번주 일욜인데 한양대 인터칼리지 인문 논술 가야할지 고민되네요... 논술 가능성은...
-
겉보기에는 너무 돌에 진심같아 보이려나
-
으억!
-
점심 뭐 묵죠 1
메뉴 추천좀
-
미적기준 76,77은 엄청 보이는데 80,84는 딱히 안 보이고.. 상위권은...
-
동사 노베 2
동사 선택하려 하는데 이다지 고아름 권용기 t들 장단점 혹시 아시는 분 있으신가요..?
-
임신시키기 5
캬캬캬
-
국어, 수학은 범위로 점수가 표시되어 있는데 1등급을 받을 수 있는 원점수...
-
주차브레이크가 패딩에 꼈었는지 반밖에 안내려가서 실격당함 아 자괴감 오지네 시팔
-
인스타는 ㄹㅇ로 그냥 디C 다된것같음
-
2411 250609 다 원전 지엽 내는 분위기가 아니라 핵심 제대로 이해하고...
-
누구랑 결혼하실래요
-
인설약은 안정이고 지방의는 5칸이긴 한데 자연대가 가고싶음
-
군대 확정됨.. 3
수송병이니 운전 열심히 하고 나오면 그래도 운전 실력 하나는 얻고 나오겠네요 ㅠ
-
오랜만에 여캐일러투척 10
와랄라마렵다
-
교육과정 바뀌면 1
바뀌기 전 마지막 수능을 치르는 해에 (그니까 2027 수능) 응시자 수가 더 많이 늘어날까요??
-
미적 vs 확통 1
확통에서 3개 맞아서 재수하랴고 하는데 미적할까.. 완전 초반이랑 통계는 풀 수...
-
역사적인 순간 ㄷㄷ
-
얼버기 4
-
작년에 스나 해보니까 ㄹㅇ 피말려서 수명깎임
벡터를 변화량이라고 인식하니까 그 의미가 와닿더라고요. 생긴건 가만있는 선분인데 움직임을 표현할수있다니. 단순한 표현 하나로 복잡함을 정리하는 수학의 아름다움이 느껴집니다.
단순한 표현 하나로 복잡함을 정리하는 수학의 알흠다움. 크~
우왕 미적해야징
대박 재밌겠다... 내가 재수했다면 바로 기하했다
쪽지 드려도 되나요
네~
쪽지 답장 부탁드립니다
수학과는 사학과네요..