라이프니츠의 위엄 #다이어그램
게시글 주소: https://test.orbi.kr/00057535903
0. 라이프니츠의 위엄
유튜브에서 '이게 바로 라이프니츠의 위엄이죠' 영상을 봤습니다.
저도 떠오르는 게 있어서 주저리주저리 라이프니츠 썰을 풀어봅니다.
1. 정언문장
모든 S는 P이다
어떤 S도 P가 아니다(=모든 S는 P가 아니다)
어떤 S는 P이다
어떤 S는 P가 아니다
위와 같은 문장을 논리학에서는 정언문장(categorical proposition)이라고 합니다. 쉽게 말해, 두 카테고리 간의 관계를 나타내는 문장이라고 생각하면 됩니다. 수학 집합과 명제 시간에 배워서 다들 익숙할 겁니다.
2. 라이프니츠 다이어그램
라이프니츠는 정언문장을 다음과 같이 선형 diagram으로 나타냈습니다. 따로 설명이 필요하지 않을 만큼 직관적입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 아래 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
3. 오일러 다이어그램
오일러는 원으로 정언문장을 나타냅니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
4. 벤 다이어그램
벤은 오일러 다이어그램을 개량합니다. 아무것도 없는 부분에는 빗금을, 대상이 존재하는 곳에는 x를 표시하는 방식입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
5. 루이스 캐럴의 다이어그램
벤 다이어그램은 집합이 넷인 경우에는 원으로 나타낼 수가 없습니다.
위와 같이 그리면 ‘A와 D만 있는 영역’과 ‘B와 C만 있는 영역’을 나타낼 수 없습니다.
참고로 벤이 제시한 집합이 4개일 때의 다이어그램은 아래와 같습니다.
이거 말고 아래처럼 꿀렁꿀렁한 버전도 제시하긴 했습니다.
_이미지 출처: Venn, J. (1880). On the Diagrammatic and Mechanical Representation of Propositions and Reasonings. London, Edinburgh, and Dublin philosophical magazine and journal of science. R. Taylor.
이외에도 벤은 집합이 다섯, 여섯인 경우까지도 어떻게든(혹은 억지로) 그림을 그려내긴 했는데, 일곱 개부터는 따로 언급이 없습니다. 실제로 컴퓨터 없이 그려내기가 몹시 어렵고, 추상화 같은 벤 다이어그램이라서 실용적으로 활용하기도 어렵습니다.
이런 문제점을 해결하기 위해 루이스 캐럴은 아래와 같이 사각형으로 나타내는 방법을 고안합니다.
(참고로 여기서 루이스 캐럴은 『이상한 나라의 앨리스』, 『거울 나라의 앨리스』 저자이기도 합니다. 작가이기 전에 수학자이기도 했으며, 『Symbolic Logic』을 쓰기도 했어요.)
사각형의 위쪽은 X, 아래쪽은 ~X, 왼쪽은 Y, 오른쪽은 ~Y를 할당하는 거죠. 그러면 아래와 같이 영역이 나뉩니다. (∧는 and, ~은 not을 뜻함.)
셋일 때는? 안쪽에 사각형을 하나 더 만들어서, 사각형 안에 있으면 Z, 밖에 있으면 ~Z를 할당합니다.
예를 들어, 질병관리청에서 제시한 <중독 분류도>는 캐럴의 사각형을 활용했습니다.
_출처: https://www.kdca.go.kr/contents.es?mid=a20308060100
이런 식으로 나타내면 카테고리가 더 많은 경우도 다음과 같이 체계적으로 나타낼 수 있습니다.
_그림출처: Carroll, Lewis (1896). Symbolic Logic. Macmillan.
6. 파그난의 SYLL
2012년에 발표된 따끈따끈한 다이어그램입니다. 키보드에서 완전히 구현가능합니다.
모든 S는 P이다
S→P
어떤 S도 P가 아니다
S→•←P
어떤 S는 P이다
S←•→P
어떤 S는 P가 아니다
S←•→•←P
직관적으로 화살표 방향으로만 이동할 수 있을 것 같죠? 맞습니다. 예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 S→M, M→P이며, 이를 연결하면 S→M→P입니다. S에서 출발하여 P에 도착했으니 결론 “모든 S는 P이다.”가 타당하게 도출됩니다.
다음과 같은 규칙도 직관적으로 받아들일 수 있습니다.
대우규칙: 어떤 S도 P가 아니다(S→•←P) ≡ 어떤 P도 S가 아니다(P→•←S)
교환법칙: 어떤 S는 P이다(S←•→P) ≡ 어떤 P는 S이다(P←•→S)
그러면 연습을 해볼까요? (직관적으로 “이게 되나?” 싶은 추론들은 다 성립합니다. ㅎㅎ)
1. 모든 A는 B이다. 어떤 A는 C이다. 따라서 ____
A→B, A←•→C를 연결하면 B←A←•→C이고, 이는 B←•→C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 C는 B이다.”입니다.
2. 어떤 A도 B가 아니다. 어떤 A는 C이다. 따라서 ____
A→•←B, A←•→C를 연결하면 C←•→A→•←B이고, 이는 C←•→•←B으로 간결하게 나타낼 수 있습니다. 따라서 정답은 어떤 “C는 B가 아니다.”입니다.
3. 모든 A는 B이다. 어떤 B도 C가 아니다. 따라서 ____
A→B, B→•←C를 연결하면 A→B→•←C이고, 이는 A→•←C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 A도 C가 아니다.”입니다.
덧: * SYLL은 syllogisms(삼단논법)에서 가져온 용어입니다. 관련 논문은 다음과 같습니다.
Pagnan, R. (2013). A diagrammatic calculus of syllogisms. In Visual Reasoning with Diagrams (pp. 33-53). Birkhäuser, Basel.
7. 라이프니츠의 위엄
오일러 다이어그램이나 벤 다이어그램은 시각장애인이 점자로 인식하기에는 다소 어려운 구조라고 합니다. 그래서 2015년 서울대학교 산업공학과 삶향상기술연구실(박우진 교수)에서 시각장애인을 위한 다이어그램을 개발했는데, 다음과 같습니다.
이렇게 하면 두 집합이 겹치는 부분이 어느 정도인지 점자로도 쉽게 확인할 수 있다고 해요. 뭔가 앞에서 봤던 것과 비슷하죠? 네, 라이프니츠 다이어그램과 핵심 발상이 똑같습니다. 박우진 교수님 연구실에서 라이프니츠 다이어그램을 알고 만들었는지는 잘 모르겠지만, 라이프니츠가 참 대단한 사람이라는 생각이 들긴 합니다. 이 역시 라이프니츠의 위엄이랄까요. ㅎㅎ
8. 잡담
2019학년도 수능에 나온 '가능세계' 다들 알죠? 라이프니츠가 “이 세계는 무한하게 많은 가능세계 중 최선의 세계이다”라고 말한 데서 출발한 개념입니다.
또한 수능국어/PSAT/LEET 준비하는 분들은 '라이프니츠의 법칙'도 이미 알고 있을 겁니다.
"라이프니츠는 만일 X와 Y가 동일하다면 이들이 똑같은 특성을 갖는다는 ‘동일자 식별 불가능성 원리’를 제시했는데"
_출처: 2022학년도 수능 예시문항 국어 5~10번
"두 대상이 모든 속성을 공유할 경우 그리고 오직 그때에만 그 두 대상은 동일하다"라는 라이프니츠의 법칙"
_출처: 2010학년도 언어추론(예비) 25~27번
만약 예시문항을 분석하지 않아서 이 내용을 지금 처음 본 수험생이 있다면, 아래 영상을 꼭 보길 바랍니다. 3분 정도면 출제 포인트를 하나 정리할 수 있습니다. :)
필요충분조건 표현법 #라이프니츠의 법칙
https://class.orbi.kr/course/1888/lesson/40685
이해황
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
영어 3이면 0
고대는 포기해야하나용 아니면 국수탐에서 ㄹㅈㄷ를 찍어야하나
-
남은기간 할 것 2
국어 -비실독 남은거 끝내기 + 비원실 비독원 복습 -문실정 + E뮨 끝내기 -실모...
-
모든 과목 난이도가 작수면 좋겠다
-
물국어는 끝나면 일단 좀 시끄러움 신나서 답 맞추는 현역들 조심 불국어는 끝나면...
-
시대북스(이로운,설맞이,이해원) 중에 추천해주세요. 시즌도 찝어주세요!...
-
불국사
-
저도 현역때 어차피 물이나 불이나 똑같이 못볼거 불이었으면 좋겠다고 빌었는데요…...
-
멘탈적 타격이 너무 심해서 뒷과목까지 영향을 미칠 확률이 너무 높다는 거에요....
-
걍 마저 끝내야겠다… 인강 듣는게 감 올리기 제일 좋은거같음
-
1등급 15% 기원
-
그건 또 그거대로 레전드일 듯
-
어감이 너무 귀여움 볼때마다 복실복실.....강아지.... 이딴생각밖에 안들어요
-
작수 28 올해 9월 30 보면 흠 171819가형급으로 어렵냐 하면 또 아니라서
-
분명작년이맘때보다성장한기분임 ㄹㅇ..
-
8일 남은 이 시점에 뭘 외우는 게 좋을까여 단어 귀찮아서 버렸었음ㅁㅜ
-
어차피 올해5 7 9 10마냥 쉽게 내지 않는이상 80점대 고정이라 오히려 좋고...
-
현역때 꽤나 어렵기로 말 나왔는데 엄청 평이해진듯 한데 맞나요? 23수능대비 수특기준임
-
불문학물독서가 정배다. 17
그리고 언매는 물 화작은 불인데 표점차는 5점. 아주 이상적인 국어시험입니다
-
밤하늘에 가득한 별
-
좇목질할사름?? 0
쪽지 ㄱㄱ 심심해요
-
국어 수학 영어 사문 한과목도 빠짐없이 실모 풀때마다 의문사 ㅈㄴ 터지네 시발...
-
수학황 고수님들 여기서 1/2차가 뭔 말인가요? 수학황 고수님들 커몬 5
이게 대체 뭔 소리인지 모르겠음 2차,2차,좌.우 1차 ?? 갑자기 밑에 1/2차...
-
슬슬떨리네 8
-
문학에 비해 덜 유명해서 불안함.. 도움받으신분 계신가료 추천대상이나 특징, 후기좀ㅠㅠ
-
만약 22/24보다 어려우면 백분위 98 이하는 한지문 통으로 날릴걸
-
삼각대 있었으면 더 이쁘게 찍었을 듯
-
병에 걸려버렸네요
-
오늘은 목성도 합류 나도 별 잘 찍고 싶다
-
수능이 임박하니 4
욕이 느는군 이런..
-
개씹노잼 시립대를 가면 좀 더 재밌어질라나..
-
의치약한수 2
암 그렇고말고 의지 약한 수의대생은 나
-
어그로 ㅈㅅ 킬캠 다풀고 강x시즌3풀었습니다 킬캠시즌2 80 68 68 72 76...
-
88(공통-12) 보정1 가능?
-
개같은
-
미적에 사탐 선택하려 하는데 약대나 공대 진학에 제한이 있을까요??
-
스물 즈음에 4
머물러있는 10대인 줄 알았는데
-
교양을 쌓아보자
-
먼데먼데 0
이기는편 우리편
-
ㄹㅇ 이보다 ㅈ같을수가 없음
-
스피커켜놓은거마냥 3일째 쾅콩울리는기붕 해결방법추천받습니다
-
자연계 말고 인문계 지원 가능한가요
-
30번 이렇게 푸는것도 괜찮을 거 같은데 논리적으로 문제가 있나요??
-
오르비 형님들 중 한 50프로는 90점대사수힘들듯 이게 한 문제만 어려워진다고...
-
맞팔해주시압 7
미리 갑사합니다
-
국어 수능 예측 3
무감각임 흘려 들으셈 1. 독서론 /평이 2. 물권담보.변제권 / 주체,객체,조건...
-
넷상에서 맘에 안 드는 사람 차단하는거랑 영어 성적이랑 뭔 상관임?(진짜모름)
-
OX모든대답 2
Go.go.
-
국어 수완 실모 0
난이도 ㅇㄸ? 막 어렵진 않은데 점수가 생각보다 낮은 듯
-
선.넘.질. 0
고.고.
-
짜파구리에 0
김치 큰거 싸서 킬바사 소시지랑 계란후라이 곁들여서 먹고 싶네 옆에 맥주 한캔 따놓고
파그난의 방식은 좀 어렵네요.
킹갓해황쌤
이것이 바로 라이프니츠의 위엄이죠
이것이 바로 실력파쌤의 위엄
실력파임을 강조하기 위해 본문하단에 제 얼굴사진을 방금 넣었습니다.
찰스 도지슨 A.K.A 루이스 캐럴
뭐라는거죠?
오..
이..이게뭐노..
해황쌤 리트 준비생인데 혹시 오르비클래스에 리기추 강의 업로드 일정계획이 어떻게 되실까요?? 막판에 3개년 기출 정리하고 시험장 들어가려고 하는데 21년도와 22년도는 각각 2지문씩밖에 업로드가 안되어 있어 근 1-2주 내로 추가 업로드 계획이 있으신지 궁금합니다 ㅠㅠ
감사합니다!