가중치 내분 (feat. 230920 미지수 없는 풀이) - 화학1
게시글 주소: https://test.orbi.kr/00058317730
가중치 내분 by 논리화학.pdf
이번엔 아예 새로운 내용을 들고 왔습니다. 가중치 내분입니다. 이해만 한다면 적용하기 정말 쉽습니다. 일차함수 내분과 존재비 내분을 둘 다 이해하고 있다면 충분히 이해할 수 있습니다.
이번 23학년도 9월 20번이 이 스킬이 너무 잘 적용이 되어서 올리게 되었습니다. 기존에도 만들어 뒀던 스킬이지만, 올릴 타이밍을 못 잡고 있었는데 이번 20번 때문에 계기가 생겨서 올리게 됐네요.
이번 23학년도 9월 20번의 상황의 경우, 일차함수 상황이지만 일반적인 내분은 사용이 불가능합니다.
하지만 가중치를 적절하게 부여하여 내분하고, 그 가중치를 다시 제외하는 방식으로 일반적인 내분이 사용 가능합니다. 이를 저는 가중치 내분이라고 하기로 했습니다. 이 풀이를 사용하면 이번 9월 20번에서 미지수를 무려 하나도 잡지 않고 풀 수 있습니다.
이번 문항 뿐만 아니라, 특히 중화반응에서 적극적으로 사용이 가능합니다. 중화반응에서는 평가원 기출 2문항과 교육청 기출 2문항을 예시로 들었습니다. 양적 관계에서는 230920과 2023 수능완성 문항을 예시로 들었습니다. 즉 총 6문제의 적용 예시를 적어두었습니다. 이 정도면 학습이 가능할거고, 추가로사설에선 엄청 많이 적용 가능할겁니다.
이 칼럼을 보신 분들은 앞으로 비슷한 풀이들을 본다면 ‘가중치 내분’이라고 총칭해주시면 감사하겠습니다. 무료 자료를 올리는 저 입장에서, 제가 새로운 풀이를 만들었을 때, 저의 흔적을 남기기 위한 유일한 방법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
자칭 여캠 스트리머
-
ㅇㅈ 7
-
재미지다 재미져 흐흐
-
언매(가채점 말고 풀었던 점수로 쓸게요) 98 미적 88 영어 86 였고, 내년...
-
수험생활시절 많은 도움을 얻었던 오르비 시간은 흘러 어느덧 28살이되었고 좋은학교...
-
사실은 7
아직 어플도 안 깐 범부입니다 그동안 크롬을 애용했음뇨
-
정치테스트 해보니 내가 되게 보수적이었다는 걸 깨달음
-
9모때 시대만 블랭크 맞췄다그래서 ㅈㄴ불안하네
-
올해 올 3등급나왔고 그러면 화작 확통이 정배겠죠? 주말 알바하면서 다시 하려는데
-
아직 재밌는데 몸이 안 받아주네
-
악 월급 들어왔다 15
기쁨의 랜덤 덕코 분수쇼
-
ㄹㅇ 지금 소신껏 일하면 조리돌림 당해요??
-
근데 영어 이 귀염둥이는 #~#
-
새벽에 질문을 받습니다 15
공부 빼곤 이것저것 잘합니다
-
본인이 현실에서 위축되는 사람이지만 가상공간에서는 적극적으로 자기표현하는 사람에...
-
난 pc방데이트
-
옯창들 점수 구경 좀 해볼까? 어 씨!발 눈에 보이는 건 5등급 플마단
-
화1 부활 기원
-
대신 지워줄 사람
-
문과 조지기 들어가는 평가원
-
꼭 내향형 나온사람 손들어보라 하면 아무도 안 들었어요 ㅋㅋ 그땐 다들 내향형...
-
예비고3입니다 현재 메가패스 끊어둔 상태고 수능때 화1생1 볼 예정인데요 고2...
-
그때 딱 씻고 자면 동선 레전드임뇨
-
난 재수하기 싫은 이유가 신입생들 중에서 혼자 나이 많은게 맘에 안들어서 나이 차이...
-
다음생엔 9
왕도마뱀 아니면 귀여운 미소녀로 태어나야지
-
거짓이미지 생성 ㄷㄷ
-
정치머시기 6
-
것같은데 근데 사실 그것도 개소리야 객관적인게 뭔데 그냥 내가 상심이 크면 큰거지...
-
수능 독서에서 배경지식이 얼마나 큰 도움이 됐는지 궁금함 앱스키마 들어야 되나
-
생명 50점 1
생명 항상 1등급 나오시는 분들은 모의고사같은거 몇분컷 하시나요? 시간 남나요?
-
현생 이미지 14
소심함 말 더듬는건 일상 걸음은 빠름 아싸
-
실수 전체의 집합에서 정의된 다항 함수 f(x)에 대하여 f(x)는 역함수...
-
염병티아이 ㅇㅈ 6
너무 흔한 mbti라 결과가 별로 맘에 들지는 않네요
-
내 현생이미지는 6
.
-
라면 먹어야되나 말아여되나 오늘 한끼먹긴함
-
발뒤꿈치에 무좀? 각질? 습진? 같은거 생김... 최근들어 스타킹 자주 신긴 했는데...
-
어캄?
-
현재는 현역이고 재수 결심했습니다 예체능으로 ( 미대 __ ) 설대랑 고대...
-
오호라.
-
난 뭘까
-
부모님 스펙 11
은 난 잘 모르겠고 일단 난 울 엄마아빠가 좋아!
-
원피스 봐야지 7
나 이제 740화 보는데 언제 따라감
-
내가 수능 끝난지 얼마 안됐는데도 매일 조금씩 실모를 푸는 이유 6
게임을 더 재미있게 하기 위해
2가 용액의 경우에도 동일하게 적용가능한건가요..?
네 전제조건은 분모와 분자가 세 점에서 선형으로 연결될것, 섞어서 다른 상황을 만들 수 있을 것 이거뿐이에요
내분 풀이가 있을벚하다 싶었는데
감시합니다!
진짜 미쳤어요ㅋㅋㅋ 이거
와씨ㅋㅋㅋㅋ개신기해ㅋㅋㅋㅋ
이런 생각은 도대체 어떻게 떠올리는 건지... 대단하시네요
고2때 내신으로만 화1을 해봤는데 이제와서 화1 다시 시작하는 것에 관해 어떻게 생각하시나요...?