[칼럼] 도형에 대한 기본적인 생각
게시글 주소: https://test.orbi.kr/00058390961
안녕하세요.
오늘은 수학 칼럼입니다. 주로 2~3등급 이하 학생 분들이 보셨으면 좋겠습니다.
상위권 분들은 도형에 약하시다면 가볍게 봐주세요..!
도형에 대해 떠오르는 것이 있어 간단하게만 정리해보려 합니다.
도형 문제는 어느 정도 풀이가 정해진 측면이 있습니다.
물론 수학을 잘 하시는 분은 워낙 많고, 간결한 풀이와 정말 기발한 풀이가 넘쳐 나지만
그럼에도 일반적인 관점에서 도형은 해야 할 것들이 고정되어 있는 편입니다.
다시 말해 2~3등급 분들이 지금 당장
수학 칼럼을 쓰시는 독존님이나 악어새님 등등..처럼 될 수는 없어도
저만큼은 하실 수 있을 겁니다.
전 문과거든요
도형 문제 학습에 있어서 가장 큰 애로 사항은,
"답지를 보면 알겠는데 어떻게 떠올려야 하지?"가 아닐까 싶습니다.
더군다나 답지를 본다고 실력이 확실히 느는 것도 아니고..
누군가 '이유'를 설명해줬으면 했습니다.
1. 삼각함수 값 하나를 준다면, 그건 모든 정보를 제시한 것이다.
제가 좀 헤매던 부분 중 하나입니다.
sin법칙과 cos법칙을 따로따로 물어보면
외접원 주니까 sin, 세 변 or 두 변과 끼인 각 주니까 cos
이런 식으로 쉽게 처리할 수 있었습니다. 이게 딱 쉬운 삼각함수 3점 문제겠죠.
그런데 조금만 어려워져도, 여기서는 sin, 저기서는 cos, 썼다가 안 썼다가 뭐 어쩌라는 건지 알 수가 없었습니다.
그런데 알면서도 활용하지 못했던 것이 있었다는 걸 어느 순간에 알게 되었죠.
하나의 삼각함수 값만 줘도, 적어도 삼각형 안에서는 모든 삼각함수 값을 다 준 것이나 다름 없습니다.
sin값을 줘도 cos값을 구할 수 있고, 그 반대도 마찬가지이죠.
그러니까
"sin값을 제시했지만 cos법칙을 활용하려면 값을 이리저리 바꿔야 한다!" 이게 아니고
애초부터 삼각함수 값은 다 주어져 있었다는 겁니다.
문제로 보겠습니다.
여기서는 sin BCD만 주었지만, 사실상 cos값도 같이 준 것이겠죠.
정말 당연한 이야기인데, 이걸 의도적으로 생각하고 풀면 안 보이던 게 보이기 시작합니다.
2. 보조선은 보조선을 긋기 위해 존재하는 것이 아니다.
이건 정말 중요한 이야기라고 생각합니다.
학생들을 가르치다 보면 '보조선을 긋는 것 자체'에 매달리는 경우가 많습니다.
하지만 보조선의 의미는 그런 데 있는 것이 아닙니다.
문제로 살펴보겠습니다.
이 문제의 마지막에서 저는 cos값을 찾으려고, 그리고 sin값을 찾으려고
그러니까 '직각삼각형을 만들기 위해' 보조선을 그었습니다.
2-1. 삼각형에서의 삼각함수 값을 활용할 생각도 해야 한다.
보조선과 연결되는 이야기인데
보통 sin, cos, tan의 정의 그대로를 기억하거나,
sin법칙, cos법칙 그 자체만 생각하는 경우가 많습니다.
그러나 우리가 중학교 때 배웠던 것처럼
삼각형에서의 삼각함수도 구할 줄 알아야 합니다.
피타고라스 정리와 연계되는 경우가 많죠.
위에 나온 문제에서도 마찬가지입니다.
3. 변형 공식은 암기해둘 필요가 있다.
sin법칙에서 나오는 공식이 았습니다.
저는 다음 세 가지 공식을 모두 외우고 있습니다.
cos법칙에서 나오는 공식이 있습니다.
저는 다음 두 가지 공식을 모두 외우고 있습니다.
워낙 문제를 많이 풀고,
또 수학 실력이 뛰어나서 안 외우고도 자유자재로 전환이 되는 사람은 모르겠지만
(사실 그런 사람도 머리 속에 이미 '외워져' 있는 거겠죠.)
일반적인 학생들은 "아니 누가 변형 공식을 무식하게 외움? 그냥 현장에서 식 변형하면 되지."
라는 생각을 많이 합니다.
그렇지만 이런 문제들이 나왔을 때 보자마자 풀이가 시작되려면
체화의 과정도 분명 필요할 겁니다.
삼차함수 비율 관계를 현장에서 증명하지 않는 것과 비슷한 맥락이라고 생각합니다.
특히 cos 공식 같은 경우, 저는 두 번째 공식을 훨씬 더 많이 쓰는 거 같네요.
솔직하게, '반드시' 암기해둘 필요가 있다고 말하고 싶습니다.
최상위권이 아닌 이상 머리 속에 넣어두지 않으면 바로 꺼내 쓰기는 어렵다고 생각합니다.
당연한 이야기이지만, 암기에 앞서 이해는 필수입니다.
4. '나만의 말'로 여러 가지 도구를 정립해두자.
많이 얘기했던 부분입니다.
'같은 cos값을 다른 삼각형에서 활용하기', '각을 넘기면 cos은 마이너스' 등
문제에 곧바로 써먹을 수 있도록
관련 개념을 나만의 말로 다듬어 놓는 것이 좋습니다.
5. 삼각형의 변과 각에 대한 명칭
이건 그렇게 중요한 건 아닌데
쉬운 문제에서 삼각형을 매번 그림으로 그려가며 푸는 학생들이 있어 간단하게만 넣겠습니다.
다들 배웠던 내용일 겁니다.
문제에서는 이런 식으로 활용될 수 있겠네요. 3번 파트에서도 똑같이 썼었죠.
더 생각나는 것도 있지만 기본적인 건 이 정도인 듯합니다.
읽어주셔서 감사합니다.
유익하게 보셨다면 좋아요 + 팔로우 부탁드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정상화되면 좋겠다 제발 만백이라도 찍혀주라 제발…..
-
서강공 적정 뜨면 굳이 다군에 인문자전 쓸 필요 없음? 0
과 원하는 거 갈 수 있으면 걍 그 과 가서 1학년때부터 배우는 게 이득이지?...
-
충남의 칸수랑 설전정 칸수랑 바꾸고싶네
-
ㅅㅂ07 정시런데, 내신 화학 1단원이랑 4단원만 1등급 뜨는 거 실화 ㅋㅋㅋ 2
정시러라서 내신 1도 상관없긴 한데, 남들 어려워 하는 거만 잘 나옴 ㅋㅋ 심지어...
-
1시간 안에만 전화 줘
-
이번에 제 학원에서 상담 받았는데 홍대 경영이 추합이 훨씬 많이 되니까 홍대 경영을...
-
수학에 대한 미련이나 아쉬움?은 안 남으셨나요? 남으셨다면 어떻게 해소하셨는지 궁금합니다.
-
사적테 5
요상한
-
환율 뭐냐 2
내가 잘못본줄 알았네
-
이재명 2
-
학과 추천좀 0
앙대 인문인데 응통 경제 빼고 다 적정 안정 뜨는데 나군에 쓸 학과 ㅊㅊ좀...
-
내신 cc 전제로 설경 들어가려면 대충 몇점정도 나와야 하나요?
-
지금쯤이면 거의다 들어온거겠죠?
-
하면 진짜너무낮게나올까봐 무서워서못하겠음뇨...
-
가,나에 적정쓰고 다군에 상향으로 써볼만 한가요? 아니면 의미없는 카드일까요?...
-
와우 0
이렇게 탄핵 시간 끌리면 진짜 대한민국 경제 망하게 생겼네
-
대충 만족하고 빨리 대학생활을 할지 1년 더 고생하고 투자할지
-
돈나오는 백수 그런거없나요
-
테ㅡ무 빌런이 가고 뭐 저런게 오냐
-
안녕하세요,, 제목과 같이 중화반응 이온수에 대해 조금이라도 학습에 도움이 되었으면...
-
생윤 내신 5등급이었는데
-
Kice anatomy 현강에서 언제쯤 시작했는지 아시는분
-
환율 정신나갔네 진짜
-
판 결 문 사건번호 : 2024크01 죄목 : 기망죄 피고인 : 쌍사(?) 판결선고...
-
ai임?
-
설대 지균 1
설대 지균 받기 전에 뭐 해야 하는 거 있나요? 서류처리라든가... 졸업생인데 원서...
-
ㅠㅠ ....
-
아직도 안 들어오신분 많으신가?
-
환율 머임..? 6
와오..
-
21학년도 이전 연고공이 지금 약수~지방한 라인이라고 봐야됨 옛날 대치에서 얘기하던...
-
동생 성적 질문 2
화작 42 기하 57 영어 3 사문 81 생명 67 이걸로 가천대 가능함? 어느 라인임?
-
1-1)1214312 2-1)3124323 2-1)312235614 기하A...
-
'부실 근무 의혹' 송민호 입건…"근태 불량 확인시 재복무" 10
(서울=뉴스1) 김예원 기자 = 사회복무요원 부실 근무 의혹에 휩싸인 그룹 위너의...
-
9999999번넘게마음이바뀌는중
-
지방대 수의 vs 유니스트 반도체는 전자 선택이 맞겠죠 2
전화 와서 일단 까긴 했는데 바로 깐 게 맞나 싶기도 하고
-
둘 중 쉬운것은 2
골라주요
-
그래도 수능전엔 실모 풀고 채점하며 희로애락을 느끼고 1시간동안 바이낸스 선물차트만...
-
어라...설대식 401이면 분명 중간공은 된댔는데... 0
어째서....??
-
귀찮음...
-
해설 안 보고 다 푼다는게 아니구 해설 퀄이 별로라 따로 찾아본다고
-
사탐적성검사 12
이거 과탐적성검사는 없나요
-
오늘 2개 붙어서 성균관대 전전 골랐습니다. 저는 프로그래밍이나 코딩에 관심은...
-
중복문항 여러개 있는거는 거짓말 방지용인가 아님 중복문항 답변도 기억 못하는...
-
근데 서울대는 별로 없는듯 재수하면 무조건 설공 아님 메디컬로 튀어야될듯 하.....
-
상경제외 그냥 복전이 답인가?
-
연논 1,2차 중복합격자 규모 공개 계획 없다고 하네요. 0
당장은 밝히지 않더라도 아니 연대 논술시험에서1차 최초합격자와 2차 합격자의...
-
엑셀을 못만지네 ㅠㅅㅠ
-
사적테 ㅇㅈ 5
쌍사는 안맞는군...
선 좋아요 후 감상
4번은 도형은 물론 수학할 때 되게 중요한 마인드인 것 같네요
작년 9평 14번 ㄱㄴㄷ 문제에서도 식만 보면 되게 거창해보이는데 그냥 ‘(p,f(p))를 원점으로 옮겨’ 라고 번역만 하면 문제의 난이도가 한결 수월해지는 것처럼요
작년 9평 22번 평균변화율 극한식에서도 그렇고 특히나 함수 문제나 도형문제에서 포장지 한겹 쌓인둣한 문제가 많아진 것 같아요
결국 자기가 얼마나 이해를 해두었느냐가 되게 중요한 거 같아요
다음에는 나만의 말 칼럼을 한 번..ㅎㅎ
좋은 칼럼 감사합니다! 근데 한 가지 실수가 있어서요 1번 내용에서 선분 BC 길이 구할 때 2sqrt21을 2sqrt2로 쓰셨어요
이건 제 개인적인 팁이면서도 하나의 기본기인데 삼각형 결정조건과 그에 따른 삼각형의 해법(삼각형의 모든 내각의 크기,변의 길이를 구하는 법)은 모두 암기해두는게 좋습니다. 이때 삼각형을 풀고 싶으면 복잡하게 사인법칙이나 코사인법칙을 활용하는 것 보단 적당히 수선의 발을 내리는 풀이가 간편한데 이건 본인이 직접 모든 케이스들을 그려보면서 어떻게 수선을 내려야 풀리는지 연구해봐야 합니다. 예를들어 변이 세개 주어지면 세 내각은 모두 코사인법칙으로 구할 수 있고, 내각이 두 개 주어진 경우 세 내각이 주어진 것과 동치이므로 아무 변이나 하나 알면 삼각형이 결정됩니다. 이때는 수선의 발을 적당히 내리면 삼각형이 무조건 풀립니다.(안 풀리면 보조선을 잘못 그은 것입니다.) 내각 하나,변 두 개인 경우 끼인각이면 코사인 법칙을, 끼인각이 아니면 수선의 발을 내려서 풀면 됩니다. 끼인각이 아닌 경우 원칙적으로 삼각형이 결정되지 않고 두 개의 케이스가 존재하지만 보통 도형문제에서는 그림이 주어지므로 그림 상에서 수선의 발을 내려보면 삼각형이 결정됩니다. (삼각형이 예각삼각형인지,둔각삼각형인지로 케이스가 갈리기 때문에 그렇습니다.)
맞아요. 이번 13번에서도 루트10 구하는거
코사인법칙으로 다들 풀었던데 수선만 내리면 특수각이라 1:1:루트2 눈으로 봐도 나오죠..
사실 의외로 도형이 제일 발상적인 그런게 적은듯
시키는 대로만 슥슥하면.. 애들이 기하 하도 어려워해서 일부러 쉽게 내는걸수도 있긴한데
적분은 진짜 어려운 논술문제 같은거 보면 이걸 이렇게 치환해? 이런게 아직 잘 안보여요 ㅜㅜ
진짜 어려운 문제는 도저히 못 풀겠지만..