수학 퀴즈 하나 내볼게요 (수하, 수2)
게시글 주소: https://test.orbi.kr/00058614944
일대일 대응 함수 f(x)와 g(x)에 대해
이 성립한다.
의 값을 구하시오.
+ 풀이 과정도 보여주면 더 좋습니다.
+ 위 성질을 만족하는 f(x) 와 g(x)의 예시를 아는 사람은 댓 ㄱ
(대학 미적분학 배우면 뭔가가 보일 수도 있습니다)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
연대 수논 버닝 이벤트 특강 열어야 진정한 사업가...
-
어디가 좋을까요 ㅜㅜ 본가는 서울인데 여자친구가 전라도사람이라;; 전남대도 고민중입니다
-
예전에 고대인가 내후년 신입생 선발인원에서 가져온적 있었음. 0
연대도 정시이월안하고 그러려고 하는거 같은데?저러면 올해 논술 준비하는사람들만 신났네
-
진짜부정할수없는미남이있음 그냥완벽그자체인
-
우리도 해줘 ㅠㅠ
-
어차피 1차 시험에 따른 합격 발표는 12/13이고 2차 시험은 12/8에...
-
의대 2000명 증원 연세대 깜짝 두 배 이벤트
-
1차합격한애들도 재시험봐서 둘다합격하는애들 나오면서 점점 인원줄이는거지
-
연대 2차 시험 치르려면 먼저 1차 합격자 알려줘야 하는 거 아님?? 4
그래야 중복 지원을 안하지..
-
에이 설마
-
혹시 이중인격 있으시면 병원 가보세요 진지하게요 애니프사는 집에 쳐박혀있는...
-
너네가 알아야할거나 궁금한건 댓글로 답할게 일단 조건만 전부 나열해봄 1. 걍...
-
내가 본 애니에서는 이렇던데,,,,,,,,
-
메디컬,계약학과는 안되는 성적이고 고려대 중간 공대?~상위공대(운좋으면) 쓸 수...
-
등급컷보니까 23수능이랑 비슷한거같긴한데 23수능땐 화작 문학 다 더럽게 쉽고...
-
연세대 논술 261명 증원이면 그 인원은 어디에서 빼오는 건가요? 1
연논 상황에서 소송을 안 당하고 마무리 지으려고 교육부와 협의해서 나름 묘책을 짜...
-
소아과 지원율 1
이대목동신생아실 사건은 2018년에 발생한 일이다.
-
작년에 와주지 ㅠㅠ
-
늘려~
-
정시 정상화 연대의 정상화 버닝이벤트
-
보통 그러지 않나
-
블라당했나? 0
갑자기 사라졌네
-
등급컷은 12/5일에 알 수 있는 건가요?? 탐구만 해당되는 얘긴가요?? 아니면...
-
연세대 버닝이벤트 ㄷㄷ
-
생각은 할수 있어도 교육업계 종사자가 저렇게 편향된 발언을 하는건 문제 있다고 봄
-
기차탑승완료 6
이제2시간만있으면 대구도착
-
이거 정시에서 떼오는 거 아니죠?
-
진짜 문레기라고 무시함?
-
자본주의는 너무 유기적으로 연결되어 있어서 내가 필요로 의해 산 제품이 착취 당하고...
-
연세대, 다음달 8일 수시 논술 ‘추가 시험’ 치른다 14
2025학년도 수시 논술 전형(자연계열) 시험 문제 유출 논란을 겪은 연세대가...
-
1스택 적립완료 8
앞으로 몇년이 남았을까나
-
1차시험응시자도 응시가능 261명 추가선발
-
시간 개아까움...
-
웹툰 추천좀 8
나심시매
-
성적 변화도 같이 적어야징
-
사건 요약 신생아실 붙어있던 4명 동시에 사망 세균성 패혈증으로 추정됨 (아마도)...
-
꺽꺽대면서 처울고있네 ㅋㅋㅋㅋㅋ씨바 뭐하는년이냐 ㅋㅋㅋㅋㅋㅋㅋ
-
그렇구나..
-
술마셔서 멍청해진 머리 13
스도쿠로 정상화시키는 중
-
대박이네요
-
커뮤니티 특 3
분탕치러 들어온 유입이랑 준고닉이 영혼의 키배를 뜨고 있는데 50%는 관심없음
-
음료수 마실 때 7
빨대로 보글보글하면 너무 애샛기임?
-
나 솔크 아니긔 4
릴스가점지해줫긔
-
ㅈㄱㄴ
-
클스마스에 부산가는데 눈오면 좋겟다
-
크앙 공룡이다 2
크아앙
정의역이 정확히 명시가 안되어있는데 그냥 실수전체집합으로 잡아요?
아뇨 히히
혹시 답이 0인가요?
네 맞아요
f^-1의 존재성 밝히려면 공역이나 치역도 잡아줘야하는데 그냥 존재하겠거니하고 진행하자면
f(c)=1인 c가 존재한다고 하자.
문제에 주어진 등식에 대입하면, g(c)=0이다.
이때 역함수의 정의를 상기하면 f^-1(1)=c 이므로
구하고자 하는 값은 0이다.
구웃구웃
조금은 아쉬운 지점이 그냥 f를 전단사함수라 주는게 어떨까 싶네요
아 일대일 함수라고 잘못썼네 ㅠㅠ 공부한지 쫌 오래돼서 실수
당직 언제 서세요
그런거 물어보지마세여 ㅠㅠ
낄낄
등식의 양변에 f^-1를 대입하면 x^2-g(f^-1(x))=1 x=1 대입하면 0 이런 느낌인가요
네 그거도 완전 좋은 풀이예요
역함수 논리로 딱 풀리네용
함수는 그냥 f(x)=x, g(x)=sqrt(x^2 -1) 정도 잡으면 되려나요
네 사실 구간만 일대일대응 되게 좁게 잡으면 아무거나 다 되긴 해요
제가 의도했던 거는 f(x)=secx, g(x)=tanx 였어요 시컨트는 구간 (0,pi/2), 탄젠트는 구간 (-pi/2,pi/2) 를 정의역으로 하면 일대일 대응이 되고, 삼각함수 제곱관계 식을 만족합니다
예시 쌍곡함수 있습니다
정확히보셨군요