변곡점의 정의가 뭔가요?
게시글 주소: https://test.orbi.kr/0005884653
변곡점의 정의가 뭔지모르겠고
왜 미분두번했을때 0이되는지 모르겠어요ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
운전면허, 알바 제외하고 추천좀 해쥬라 저번주부터 폰만보는데 이제 질림 ㄱㅋ 같이...
-
듄탁해와 개념강좌들을 포함하고도 유기한 수학컨이 이기는 모습 버린 컨텐츠 + 책장에...
-
과탐이 더 재밌는데..
-
무휴반 1일차 1
일단 풀파워 얼버기
-
얼버기 4
출근 준비 시작
-
난 밤샜는데..
-
언미물화 원점수 희망편 98 88 48 45 절망편 95 88 47 45 국어(선택...
-
기차지나간당 4
나는야 폭주기관차
-
탐구 고민 0
원래는 그냥 물1 하려했는데 다들 하지말라그래서 고민이네요 ㅜ
-
기상 완료 오늘 예비군 1일차임 아..
-
중앙대에서 반수한거라.. 학교는 바꾸고 싶네요
-
다이어트하는법 3
밤낮 주에 한번씩 바꾸고 하루한끼먹고 음료수 제로로마시면됨 이방법으로 73-55됐다...
-
이런감각오랜만인걸
-
잘자래이 3
7시 약속은 아침이지만 8시에 보자.. 친구야..
-
지금 700kg임
-
ㅇㅇ
-
진짜잠뇨
-
공부관련 질받 ㄱㄱ 22
-
키가 있어서... ..
-
흠흠
-
이거보는사람 4
잠만보임.
-
올해도 솔크네 10
송도에서 커플들 돌아다닐 꼴을 생각하니 벌써 개열받는구만..
-
아 맞다 내일약속이 15
지금 생각남 13시임... ..
-
궁금
-
메디컬이나 서울대 가고 싶음 국어 솔직히 단어 틀이라 존나 억울하긴 함 무튼 현재...
-
고정맴버인듯 지금 활동 하시는분들
-
지랄하지마셈뇨
-
10덕이 만듬ㅋㅋㄱㅋㄱㅋ
-
라인봐주실분 4
진학사에선 국어 백분위 90뜨긴하는데 한양대는 될까요? 메가 모의지원은 안정으로...
-
머임 5시임? 3
ㄹㅈㄷ
-
덕코가 늘었다 6
많이는 못준다 진짜다
-
그게아니면 시간이 말이안된다
-
수특으로 독학할땐 이건 아니다 하고 접긴 했는데 고정 50 가능하다길래 다시...
-
할거 다햇다 자러감뇨 17
빠빠뇨
-
알라미라고 알람미션 거는 앱이 있는데 2자리 사칙연산 암산 5개 걸어놓아도 풀고...
-
대학라인 몇개바뀜?
-
솔직한 투표 부탁드립니다
-
진심 활동 하는사람 17
안자는 이유가 뭐야?
-
딸기우유 도시전설있잖슴 11
그거 내가 ㅈㄴ속아봄
-
스펙평가좀 9
키14 몸무게3 무직백수 오르비많이함 어떰뇨
-
고딩이 논문 읽으면 11
머리 굳고 용어 하나하나 다 찾으면서 꽁꽁 싸매면서 수십분~1-2시간 읽어야...
-
생2보단 가능성 높나 한번 더 하려는데 생2 버리고 갈지 고민이네요.. 24부터해서...
-
?
-
ㅇㅈ2 9
ㅎ
-
잔다 6
르크 ㅋㅋ
-
안녕하세요 10
님들 왜 다 안 잠?
-
기차지나간당 8
부지런행
-
진짜 잔다. 6
이젠 진짜로 자야해.. 진짜 잘게요..
-
내 성격먼거같음? 11
맞추면 그냥 이뻐해드림
도함수의 극점...
변곡점은 삼차함수에만있나요?
아니요...
미분두번했을때0되는점이 왜변곡점인가요??
원래 도함수의 증감이 바뀌는지점이에요
아 그렇군요!! 그럼 삼차함수는 변곡점을 기준으로 항상대칭인가요?
생각해보시면 미분하면 2차함수가 나오고 2차함수는 대칭축을 기준으로 항상대칭이니 증감이 같잗아요 완전히 그래서 당연히 대칭이죠
좀 알것같아요 감사합니다~
그래프의 오목 볼록 즉 미분계수의 변화율을 따지는 것 아닌가요 오목에서 볼록으로 바뀔때 증가함수하면 원함수의 변곡점 주위의 미분계수가 변곡점보다 작잖아요 그러니까 미분계수의 미분 이계도함수의 극값일 때 변곡점 인거 같은데요 그냥 직관적인 판단으로는. 그러니까 당연히 0인거요
이계도함수의 극값이아니라 부호변화점입니다
아 말실수 ㅋㅋㅋ 죄송 자기전에써서 경황이없었네요 도함수극점
미분계수의 변화?가바뀌는부분은 극값아닌가요? 변곡점은무슨차인가요?
변곡점의 정의가 도함수의증감이 변화되는 지점이에요
도함수의 극점이 변곡점 맞아요.
극값은 극점의 y좌표 말하는거에요.
직관적으로 이해 시켜드리자면 변곡점이 위로 볼록에서 아래로 볼록으로, 또는 그 반대로 함수 모양이 바뀌는 점이기도 하거든요.
위로 볼록한 함수를 그려보시면 도함수가 점점 감소하는 걸 볼 수 있고, 아래로 볼록한 함수를 그리면 도함수가 점점 증가하는 걸 보실 수 있어요. 그럼 각각 이계도함수가 전자는 음수이고 후자는 양수라는 이야기죠.
이계도함수의 부호가 바뀌는 점(=f''(x)=0인 점)에서 위/아래볼록이 바뀌고, 이를 변곡점이라고 합니다.
이제 교과서 변곡점 파트를 한번 주의 깊게 읽어보시고, 위/아래 볼록 파트를 읽어보시고, 다시 변곡점 파트를 읽으면서 의미를 머릿속에서 재구성 하세요
사실 제가 문과라서 변곡점파트가 교과서에 없어요ㅠㅠ 아무튼 이해가됐어요 감사합니다~^^
참고로 도함수 부호가 바뀌어도 그 점에서 함수 자체가 정의되지 않으면 (y=1/x는 변곡점을 가지지 않습니다) 변곡점 아니에여
변곡점은 도함수로 정의되는게 아니에요. 극값이 도함수로 정의되지 않는거랑 마찬가지에요
변곡점의 정확한 정의는 볼록성이 변하는 점입니다.
윗분 말이 맞습니다. 오목성이 바뀌는 거에요. 아래로 오목에서 위로 오목으로 변하는 것과 같은 거에요. 그 점에서 미분이 가능하면 이계도 함수로 판단하면 되지만 그렇지 않은 경우에도 변곡점이 있을 수 있습니다