2022학년도 고3 10월 미적분 30번 해설
게시글 주소: https://test.orbi.kr/00061354089
그냥 여담으로 드리는 말씀이지만 평가원 모의고사와 교육청 모의고사는 년도를 세는 기준이 다릅니다.
평가원 모의고사/수능은 대학수학능력을 측정하고자 하는 시험으로, 시험을 치는 년도의 다음 해에 대학에 입학할 학생들을 응시 대상으로 하기에 시행 년도에 1년을 더한 햇수를 표기합니다. 예를 들어 2022년에 시행된 6월/9월/수능은 2023년에 대학에 입학할 학생들의 대학수학능력을 측정하는 시험이기에 2023학년도 6모/9모/수능 이렇게 표기합니다.
이와는 대조적으로 교육청이 주관하는 모의고사 시험들의 경우 정식 명칭이 전국연합학력평가인데, 전국연합학력평가는 '그 해의' 전국의 학생들의 수준을 가늠하기 위한 시험이기에 시행 년도를 그대로 표기합니다. 즉 제가 오늘 올릴 문제는 2022년 10월에 시행된 학력평가 미적분 30번 문제인 것입니다.
다들 알고 계시리라 생각합디다만 의외로 헷갈리기 쉬운 사항이기에 이러한 서론을 적어보았습니다.
---------‐-----------------------------------------------‐-----------------------------------------------‐-----------------------------------------------‐-------------------------------------
30번 문제입니다. 가형 30번과 요즘 미적분 30번을 비교해보면, 상대적으로 문제의 호흡이 상당히 짧아진 대신 핵심적인 요소들을 정확히 파악해야 한다는 점은 비슷합니다.
우선 문제를 읽어보면, (가) 조건을 해석하는 것이 관건으로 보입니다. 간혹 가다가 적분식을 미분할 생각을 하지 못하고 문제를 결국 풀지 못하는 경우가 종종 있는데, 적분식을 포함한 관계식이 주어져 있다면 우선 미분을 해보는 것 역시 굉장히 중요합니다. 이렇게 적분식이 주어져 있을 때 미분을 통해 상황을 파악하는 문제들이 유독 올해 교육청 시험에 많은 편이었습니다. (3월 22번, 4월 22번) 아무튼, 양변을 x에 대해 미분하면...
이러한 관계식이 나옵니다. (G(x)는 g(x)의 부정적분입니다.) 여기서 양변을 미분하였을 때 오른쪽 항이 -g(3a-x)이 되지 않는 이유는 합성함수의 미분에 의해 속미분을 했을 때 -1이 곱해지기 때문입니다.
관계식을 잘 살펴보면, g(x)가 x=3a에 대해 선대칭이라는 것을 알 수 있습니다. ln(x)는 증가와 감소가 변하지 않는 일대일대응 함수이므로 f(x)+f'(x)+1이 x=3a에 대해 선대칭인 이차함수라는 것을 알 수 있겠군요. 편의상 f(x)+f'(x)=h(x)라 하면 g(x)는 항상 0보다 큰 값만을 가지므로 h(x)+1은 항상 1 이상, 즉 h(x)는 항상 0보다 큰 이차함수라는 결론을 내릴 수 있습니다.
따라서 h(x)의 대칭축이 x=3a임을 파악하면 이와 같이 h(x)의 식을 세울 수 있습니다. 하지만 아직은 정보가 너무 부족합니다. '상수' a의 값이 구해져야 문제를 풀 수 있을 거 같은데 아직 a의 값을 구할 수 있는 관계식을 찾지는 못했습니다. 어떻게든 a의 값을 구해봐야 할 거 같은데, g(x)를 가지고 할 수 있는 이야기는 이 정도가 끝으로 보입니다.
여기서 한 가지 말씀드리자면, 적분식을 보았을 때 우리가 할 수 있는 행동은 크게 2가지입니다.
1) 미분한 뒤 도함수의 정보를 파악한다.
2) 적분식에 적당한 수를 대입하여 값을 추려낸다.
1번의 경우에는 수2와 미적분 모두에서 공통적으로 요구되는 사항이지만, 2번의 경우에는 과거 일부 가형 킬러 문제에서 요구되었던 발상입니다. 왜냐하면 수2에서는 합성함수의 미분법을 배우지 않기에 적분구간에 x의 계수가 1인 일차식만을 넣을 수 있어 대입과 관련된 이야기를 하기가 상대적으로 어렵기 때문입니다. 방금 적분식을 미분하여 g(x)에 대한 정보를 파악했으니 이제 적분식에 적당한 수를 대입할 차례입니다.
'모든 실수 x에 대해' 두 적분식의 값이 같다고 하였으므로 이는 x에 대한 항등식입니다. 무엇을 대입하여야 할까 좀 생각해보니, g(x)가 항상 0보다 크다는 점에서 착안하여 위끝을 동일하게 설정해준다면 아래끝의 값이 서로 같을 것이고, 아래끝을 동일하게 설정해준다면 위끝이 서로 같을 것이니 이를 통해 a를 구하면 되겠군요. 저는 편의상 아래끝을 동일하게 2a로 맞춰주겠습니다. 물론 위끝을 동일하게 2a+2로 맞추셔도 a값에는 변화가 없으니 참고 바랍니다.
그러면 앞서 언급한 h(x)의 식은 h(x)=(x-3)²+k가 되겠군요. (나)에서 g(4)=ln5라 하였으니 h(4)+1=5가 되므로 h(4)=4가 되겠군요. 그려면 k=3이 나오네요. 이제 끝났습니다. 답을 슬슬 낼 시간입니다. f'(x)를 구해야 하므로 구해보면...
f'(x)는 이와 같습니다. 이제 진짜 답을 내봅시다.
따라서 m=-4, n=16이 되어 m+n=12임을 알 수 있습니다. (EBSi 기준 정답률 8.2%)
개인적으로는 이 문제가 정적분의 주요한 성질들을 굉장히 잘 묻고 있다고 생각합니다. (특히 g(x)>0임을 이용하여 a를 구하는 부분) 다만 당시 10월 22번은 정답률이 약 3.9% 정도로 잡히는데, 굉장히 전형적이었던 다항함수 킬러 문항이었어서 오히려 이 30번이 더 어려웠다 생각했으나 정답률이 이쪽이 2배 이상 높게 나온 것을 보고 조금 신기했던 경험이 있습니다. 아무튼 해설은 이쯤에서 마치겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재수하려고 합니다 국어는 모고만 한달에 한두번 풀어보고아무것도 안해도 1나오고 가끔...
-
두번째 사진도 반영해서 어림잡아 지원하나요?최종업뎃후 20명꼇는데 원래불합이였는데...
-
전남대 농대 인천대 공대 둘다 안정카드라 어디쓸지 고민입니다.. 전남대 간다면 공대...
-
영어3이라고 처음에 상경계열 눈팅만 하다가 포기했었는데 그러지말고 다른애들도 계속 지켜볼껄 그랬나…
-
원서접수완료 1
가나다군 합 3칸 지원완료
-
잠을 못자겠음 ㅜㅜ
-
대깨설이고 서울대농대 썻는데 진학사 실지원보니 떨어진거 같아서 반수생각을...
-
중간공보다는 약간 낮게 느껴져서요
-
얼마나 가난해야함? 지균은 얼마나 시골이어야함?
-
상경대학 통합모집..신설이라 그런지 학교 홈페이지 찾아봐도 정보가 없네요...
-
미필 사수 어떻게 생각하세요? 삼수 개망해서 대학교 갈곳이 없어요 아직 군대도...
-
탐구는 사탐도 ㄱㅊ
-
아파.. 0
ㅎㅎ
-
대학 추합 0
210등중에 26n등인데 돌겠지 작년입결이없는 신생 + 추합 ㅈㄴ도는구간
-
글씨체 6
특이한 편인가요??
-
다 자나 인제 1
ㅇㅅㅇ
-
살짝 불안한데
-
오르비 내에서 몇명 쓰신 거일지 궁금하네여
-
성대 경영 9
나군에 서강대 경영이나 경제로 돌리는게 맞을까요?
-
업데이트 후로 등수 안 바뀐 거면 상향 카드 가능성 없음?
-
기출에 나온 것 같은데.. 그 남편이 외출하고 돌아올 때 가면을 안 벗는다? 근데...
-
대학가기 참 힘드네요
-
나 홍대 붙게ㅆㅂ 니들은 다서울대가라고
-
저는 하루종일 자기 밤새고 생활 불가..
-
중경외시가기 참 힘드네요
-
야동은 에드블로커가 제일 편하듯이
-
잠이 안오네요••
-
속썩이네 진짜
-
별하나가나를내려본다 이렇게 많은 사람중에 그별 하나를쳐다본다~아 아 밤이 깊을수록...
-
여보세요 0
여보안뒈~ 사랑해요
-
냥냥에리카냥냥 0
냥냥에리카짱냥냥
-
이글재밋네요 4
https://orbi.kr/00010082981 ㅋㅋㅋ
-
덕코가 많네 10
-
좋아 난 자겠어 7
외vs건 결과 나오면 깨워줘
-
우삼겹 콩나물 넣으면 존나 맛있음
-
동생이 이번에 수능을 봤는데 6모, 9모, 사설 모의고사 항상 국어 1~2등급...
-
그것만이 살길.
-
홍대는 이게 문제임 12
학교가 홍보에 전혀 관심이 없음 인스타 유튜브 다 방치 동국대맘 봐도 인스타 이쁘게...
-
서울대 6
진학사 점공 계속 최초합권이여서 1차는 그나마 안심하고 있었는데 지교 2.3:1에서...
-
점점 떨어져서 걱정되네
-
사실 엄청 심한정도는 아닌데 2학기 내신기간에 수2만 하다보니까 수1을 좀 많이...
-
제빵대 vs 무관대 벌써 근본잇음
-
옯서운 이야기 4
내가 어케 벌점이 0이지..
-
아래 글 보고 갑자기 해보고싶어졌어요
-
하아.. 늙기싫다
-
가나다 각각 5칸최초, 5칸최초, 5칸추합 이고 모집인원도 각각 60명, 30명,...
-
뻥임뇨
-
아구창에다 내 핫도그 쑤셔넣고 싶음 ㄹㅇ..
-
문과가 부럽다 5
철학,사상,정치,법,경제 그런거 공부하니까 교양있어보임 난 소금물에 물 타면서 농도...
-
자기 말에 동조 안 해주는 사람= 다 외훌, 고로 자기 혼자만 외훌 얘기하므로...
동의합니다. 저도 현장에서 풀었을 때는 이게 22번보다 어렵다고 느껴졌던 거 같습니다. 그런데 막상 수능 끝나고 심심할 때 하나씩 풀어보니 쉽게 풀리는 문제들이 종종 있는 것도 같습니다ㅋㅋㅋ
저는 다음과 같이 풀었는데 주니매스 님 풀이를 보니 잘 푼 것 같아 다행이네요! 글 감사히 읽었습니다
(가) g(x)>0 <=> f(x)+f'(x)+1>1 <=> f(x)+f'(x)>0
적분식의 양변을 미분하면 g(3a+x)=g(3a-x)
<=> g(x)는 x=3a 대칭
<=> f(x)+f'(x)+1은 x=3a 대칭
(g(x)에서 f(x)+f'(x)+1이 합성된 ln(x)가 증가만 하거나 감소만 하는 함수이기 때문)
적분식 integrate g(t) dt from 2a to 3a+x = integrate g(t) dt from 3a-x to 2a+2 를 integrate g(t) dt from 2a to 3a + integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a + integrate g(t) dt from 3a to 2a+2로 바꾸면 앞서 g(x)가 x=3a 대칭임을 알았기 때문에 integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a 임을 알기 때문에 남은 식 integrate g(t) dt from 2a to 3a = integrate g(t) dt from 3a to 2a+2 에서 2a+2=2a or 2a+2=4a로부터 a=1 결정 (a=/0를 가정하고 풀었는데 a=0이라면 모순 발생)
(나) g(4)=ln5 <=> f(4)+f'(4)=4
얻은 조건들로부터 f(x)+f'(x)=(x-3)^2+3이고 f(x)=x^2-6x+12임을 알 수 있고 마지막 적분 식은 치환적분법에 의해
integrate ln(x^2-6x+13)*(2x-6) dx from 3 to 5 = integrate ln(t) dt from 4 to 8 이므로 적분값은 16ln2-4, 답은 12
감사합니다. 요즘 미적 30번은 여전히 식이 가진 의미를 파악하는 것이 중요하긴 하지만 그래도 과거에 비하면 계산량은 좀 줄어든 느낌이 드네용
동의합니다, '식이 가진 의미를 파악하는 것이 중요'하다는 말에서 2021학년도 고3 10월 미적분 29번도 떠오르네요! 그 삼각함수에 대해서 정적분 조건 제시했던 (제 기억이 맞다면)