통계질문 능력자 답변좀 부탁해요
게시글 주소: https://test.orbi.kr/0006170969
신뢰구간의 길이를 구할때
모평균 m은 표본평균 +- 신뢰계수*루트엔분의 시그마 입니다.
문제1) N(100,5^2)을 따르는 모집단에서 크기가 50인 표본을 추출했을때
신뢰구간을 구하여라
문제2) 모집단에서 크기가 50인 표본을 추출하였을때 N(100,5^2)이 된다고 한다.
신뢰구간을 구하여라.
문제1과 문제2의 답은 똑같습니다.
하지만 제가 생각하기에 원래 공식에서 루트n분의 시그마가 나타내는것이
표본의 표준편차이므로 문제 2번을 구할때는 달라져야하는데 그렇지가 않네요.
개념원리 책에서는 표본의 크기가 충분히 크면 이를 모집단의 표준편차로 봐도 무방하다
적혀있긴 하지만 와닿지가 않습니다.
고수분이 설명해주실수있으면 좋겠네요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언매 vs 화작 0
재수 준비하고 있는데 언매 할지 화작 할지 고민중입니다 이번 수능에서 화작 15분...
-
치타는 울다가 웃어서 엉덩이에 털났다.
-
2025 수능이 끝나고 얼마 안 됐네요. 저도 봤습니다 ㅋㅋ 제가 지금 수능만 3번...
-
반갑습니다. 17
-
사실상 오지 말라죠? 최고점-최저점 20점 이상이냐 이하냐에 따라 다르지만
-
지난 입시결과 보니까 제 환산점수가 아득히 뛰어넘는데 메가 모의지원은 소신으로 뜸
-
지금 6등급이구. . . 일단새벽 6시-7시 20분까지 모의고사연습 9시까지...
-
3월 말부터 공부하면요 ㅠ
-
정상화좀
-
일단 3월부터 수능날까지 매일 3-4시간 투자할거고 3월말부터개념,기출 들이박고...
-
33257수의대 1
과탐은 올해하다가 놧는데 재수하면 수의대 갈 수 잇을까요 과탐은 생지로 바꾸려합니다
-
님들 나 어때? 1
나 진심 문제 있는걸까. . 너무 불안해
-
생지랑 정도 많이들었고, 쏟은 시간이 아까워서 사탐런을 하기 망설여집니다 우선...
-
ㄹㅇ 중간에 정병왔을거같음 국어 5월중순인가에 풀려서 경기도에서 버스타고 갔는데...
-
가채점 지금 진학사나 메가에서 점수 주는 거 확통틀이면 표점 우세한 거 반영되어있나요?
-
생각보다 꽤 많은 동아리가 나이 많으면 컷합니다 지금 기준 9n부터는 신입컷하더라구요
-
학교 다니면서 느낌 진짜 있음 그냥 나랑 다른거라 부럽다거나 그런 느낌도 안듦걍...
-
고1이고 스카다니고있는데 중학생들 시험기간되면 너무 시끄럽고 사람이 많아서 집가까운...
-
고인물임
-
언매 91 미적 공통-2 미적-1 틀림 88 영어 4등급 생명 45 지구42...
-
31411 정시 문과라인 어디까지일까요? 정시는 처음입니다 2
국어 78 언매 수학 88 미적 영어4 정법 47 사문47 입니다 문과라인 어디까지...
-
연세대 이 트래쉬 잡대 대체 가스라이팅을 어캐했길래 애들이 계속 연대한다 연대한다...
-
오랜만에 메가나 들어가볼까 해서 갔는데 2타시네요..? ㄷㄷ 양승진t가 4타 되시고..
-
고교 출결때문에 암만 높여봐도 97점이네... 5월 입대 노리고있는데 이거...
-
학고반수 실패에 관해 질문 답변.. 제발 부탁드립니다.. 2
1학년 1학기 아예 학교 안다니고, 2학기는 휴학했습니다. 학사경고장은 받았습니다....
-
탐구 고민 0
과탐 1 2 각각 뭐 해야하죠? 물1 지2?
-
올해같은 입시에서 서울대 의치대는 cc면 힘든가요? 0
어떻지 모름
-
감점폭도 크고 비교내신도 안 주는 이유는 메디컬 때문같음 그리고 수시 출신이나 내신...
-
예체능이라 수학 빼고 저 성적 나왔습니다 .. 재수때 나름 거의 아침부터 열심히...
-
으아아아ㅏ아ㅏ 잘래
-
생1은 개념형 다풀고 근수축 막전위 푼후 4문제 찍어서 하나 맞추면 개날먹으로...
-
어지간하면 bb아님 cc 둘 중에서 준다던데 cc는 얼마나 까이는 거임...
-
반드시 ㄱㄱ헛
-
이거 채용조건형임??? sk나 삼전??
-
그냥 얼굴 때문이 아니라 돈버는게 얼마나 ㅈ같고 고된건지 알면 알수록 짜증이남
-
논술 질문 0
제가 a에서 선분 cd에 내린 수선과 cd가 만나는점을 h라하자를 a에서 선분...
-
형 잔다. 2
오르비 취침소등하겠습니다. 편안한 밤 되십시오!
-
하.......예전에는 하루에 2쿨도 봤는데
-
cc라면?
-
본인들은 의대 가서 전문의 따는게 가성비가 어떻다 생각함? 그니까 의대 가기 위한...
-
평소에 잘 하다가 재수 수능 딱 한 번 망치니까 진짜 살기 싫음
-
낮과 추추합은 노려볼만하겠죠?
-
보다보다 어지러워서 잘거임뇨..
-
하. . . 사탐런할거면 얘로 가야할까요?
-
재수 시작하기 전까지 알바 투잡 존나 하셈 그리고 햇살론대출로 몇백 대출 땡기고...
-
1학년때부터 지금까지 제대로 국어 공부라는걸 해 본적이 없음.. 독서 기출만...
-
하. . . 지금 과탐 가산점도안주고 문은 다 열렸고 할 이유가 1도 없어보이는데 천재 빼고는
-
지금 보면 성적이 그나마 잘 나왔던 이유가 재수 초중반엔 맨날 쳐@자고 놀기만...
-
ㅇㅇ
네 n이 충분이 크면 표본표준편차 s가 모표준편차 시그마가 되요 고교과정내에서는 증명못해요.
뭔가 개념상의 오류가 나신것같은데
님 말을 잘 생각해보니까 님은
문제 1은 추출한 50개의 표본 내에서의 분포로 해석하신것같고
문제2는 표본평균들의 분포로 해석하신것같네요
그리고 표본평균의 분산은 표본개수가 많아질수록 모평균에 밀집한 분포를 보이므로 분산은 작아지겟죠 루트n분의 시그마가 그말임
n(표본개수)가 커질수록 분모가 커지니까 분산은 작아질수밖에없죠
표본의 크기가 클때 시그마를 s로 대체하는건 t분포랑 자유도에 관한 이야기인데 이건 교과과정 외이므로 그냥 저 말만 이해하시면 될듯
그리고 표본평균의 분산은 표본개수가 많아질수록 모평균에 밀집한 분포를 보이므로 분산은 작아지겟죠 루트n분의 시그마가 그말임
n(표본개수)가 커질수록 분모가 커지니까 분산은 작아질수밖에없죠
표본의 크기가 클때 시그마를 s로 대체하는건 t분포랑 자유도에 관한 이야기인데 이건 교과과정 외이므로 그냥 저 말만 이해하시면 될듯
그리고 표본평균의 분산은 표본개수가 많아질수록 모평균에 밀집한 분포를 보이므로 분산은 작아지겟죠 루트n분의 시그마가 그말임
n(표본개수)가 커질수록 분모가 커지니까 분산은 작아질수밖에없죠
표본의 크기가 클때 시그마를 s로 대체하는건 t분포랑 자유도에 관한 이야기인데 이건 교과과정 외이므로 그냥 저 말만 이해하시면 될듯
그리고 표본평균의 분산은 표본개수가 많아질수록 모평균에 밀집한 분포를 보이므로 분산은 작아지겟죠 루트n분의 시그마가 그말임
n(표본개수)가 커질수록 분모가 커지니까 분산은 작아질수밖에없죠
표본의 크기가 클때 시그마를 s로 대체하는건 t분포랑 자유도에 관한 이야기인데 이건 교과과정 외이므로 그냥 저 말만 이해하시면 될듯
네 답변에 감사합니다. 인디고잉님. t분포와 자유도에 대해 조금더 말씀해주실수 있으신가요?
아 죄송합니다 생각해 보니 t분포는 적합한 설명이 아닌것같네요
그니까 모표준편차는 편차의 제곱합을 n으로 나눠주고 표본표준편차는 편차의 제곱합을 n-1로 나눠주는데 n이 충분히 커지면 n과 n-1사이에 큰 차이가 나지 않기 때문에 대체가능한것같습니다
in3131님은 표본의 평균, 분산, 표준편차(표본평균, 표본분산, 표본표준편차)와
표본평균의 평균, 분산, 표준편차의 의미가 명확하게 정리되지 않은 것 같습니다.
예를 들어 어떤 고등학교 3학년(10개 학급) 학생들의 키를 조사한다고 합시다.
여기서 3학년 1반을 하나의 표본으로 삼으면 이 반 학생들 키의 평균, 분산, 표준편차가
표본평균, 표본분산, 표본표준편차입니다.
다음으로 3학년 1반의 표본평균이 bar X₁, 2반의 표본평균이 bar X₂, …, 10반의 표본평균이
bar X₁₀이라면 X₁, X₂, …, X₁₀에 대한 평균, 분산, 표준편차를 구할 수 있습니다.
이것이 표본평균의 평균, 분산, 표준편차죠.
또한 표본평균 X₁, X₂, …, X₁₀의 평균은 모평균(3학년 전체의 평균)과 같고,
분산은 모분산(3학년 전체의 분산)을 표본의 크기 n으로 나눈 것과 같습니다.
그리고 한 반에 속하는 학생들이 충분히 많다면
한 반의 표준편차와 3학년 전체의 표준편차는 비슷해집니다.
이것이 표본의 크기가 충분히 클 때, (표본표준편차)를 (모표준편차)로 봐도
무방하다는 말과 연결되는 것이죠.
<문제1의 경우>
모집단이 N(100, 5^2)을 따르고, 표본의 크기가 50이므로
표본평균의 분포는 N(100, 1/2)을 따릅니다.
신뢰구간의 sigma / √n 은 표본평균의 표준편차이므로
이 문제에서는 1 / √2이 됩니다.
그런데 문제에서 모평균이 이미 주어져 있기 때문에 신뢰구간을 구하는 의미가 없습니다.
구하려고 해도 추출된 표본에 대한 표본평균이 없구요...
<문제2의 경우>
표현이 애매한데 하나의 표본에 포함된 변량들이 N(100, 5^2)을 따른다고 생각합시다.
그러면 표본의 크기가 충분히 크므로 (모표준편차)=(표본표준편차)=5로 볼 수 있습니다.
따라서 모집단의 분포는 N(?, 5^2)을 따르고, 표본평균의 분포는 N(?, 1/2)을 따릅니다.
신뢰구간의 sigma / √n 은 표본평균의 표준편차이므로
이 문제에서도 1 / √2이 됩니다.