칼럼1) 알아두면 쓸데있는 다항함수 적분공식 총정리
게시글 주소: https://test.orbi.kr/00061780620
제 첫 번째 칼럼 주제는 다항함수 적분공식 총정리입니다.
적분공식들은 계산을 훨씬 가볍게 해주고, 빠르게 점검할 수 있어서 검토용으로 쓰기에도 좋습니다.
사실 다항함수 적분 공식은 엄청나게 많습니다. 하지만 그걸 다 알 필요는 전혀 없습니다. 실전에서 쓸만한 공식 몇 가지만 체크하고 넘어가면 됩니다.
이미 아는 게 나왔다면 '아 맞아 이런게 있지~' 생각하며 복습차 확인해주시고, 처음 보는게 나온다면 '이런게 있구나 알아둬야겠네' 생각하며 읽어가시면 됩니다.
1. y=xn 꼴
초록 넓이 : 노란 넓이 = n : 1
(각 직선들은 축에 평행하게 그려져야 하고, 최고차항 계수가 1이 아니어도 성립합니다.)
모든 n차 다항함수에 대해서 성립하지만, 사실상 수능에서는 이차함수의 경우에만 유용합니다. 삼차부터는 저도 써본 적이 없어요.
일차함수 넓이 구할 때 적분하지 않잖아요? 비슷한 느낌으로 이 공식을 알면 이차함수의 경우에는 많은 경우에 적분을 할 필요가 없어요. 모든 이차함수는 곡면아래 넓이를 저런 식으로 도출해 낼 수 있기 때문이죠.
이차함수의 경우 위 상황에서 초록부분과 노란 부분의 넓이비는 2:1이며, 이를 다음과 같이 인식할 수도 있습니다.
표시한 전체 직사각형의 넓이 x 1/3 = 곡면 아래넓이
예를 들어보겠습니다.
위 경우에서 1에서 2까지 이차함수의 적분값을 구하는 상황입니다. 첫 번째로 할 일은
표시한 부분의 직사각형을 보며, 직사각형의 넓이가 2이기 때문에 곡면 아래 넓이는 1/3 배인 2/3임을 구하는 겁니다.
그래서 색칠한 빨간 부분의 넓이는 2/3이고, 적분값은 노란 영역의 넓이인 1까지 더해줘야 하므로 답은 5/3입니다.
이와 같이 접근하면, 이차함수 적분 문제에서 적분 구간이 축을 포함하는 상황은 전부 빠르게 처리할 수 있습니다. 최고차항 계수가 1이 아닐 때도 당연히 성립합니다. 다만, 이차함수의 적분 구간이 축을 포함하지 않는다면, 대체로 그냥 적분하시는게 더 빠를 겁니다.
한편, 다음과 같은 오해를 하여 삼차함수에서 이를 쓰려고 하시는 분들도 가끔 있습니다.
"이 경우엔 3:1 ?"
은 절대 아닙니다. y=xn 꼴에서만 사용할 수 있는데, 위 상황은 그런 꼴이 아니기 때문입니다.
그런데 y=x3꼴의 적분을 묻는 경우는 거의 없잖아요? 그래서 앞서 말했듯이 삼차 이상부터는 거의 쓸 일이 없습니다.
2. 이차함수
너무 유명한 공식이죠. 인지해야 할 점이 딱 두 개 있습니다.
1) 둘러싸인 넓이는 오직 x좌표 차이에만 관련이 있다!
2) 색칠한 넓이가 반띵이 되는 곳은 이차함수의 축이 아니라 알파와 베타의 중점 부분입니다. 당연한 내용인데, 가끔씩 실수가 나오기도 하므로 유의하세요.
한편, 공식은 아니지만 알아두면 정말 많이 쓰는 이차함수 넓이 관계가 두 가지 있습니다.
1) 위 경우처럼 길이비가 각각 2:1일 때 초록 부분과 파란 부분의 넓이가 같습니다. 이는 해당 적분 구간의 적분값이 0임을 의미하기도 합니다. (초록과 파란 부분의 넓이는 같은데 부호가 반대니까요.)
이는 삼차함수의 2:1 관계와 관련이 있습니다. (이 말은 이해가 안 되시면 그냥 넘어가셔도 좋아요.)
2) 위와 같이 초록색 적분구간이 이차함수의 축에서 시작할 때, 길이비가 그림처럼 1:루트3으로 만들어진다면 초록 부분과 파란 부분의 넓이가 같습니다. 이는 삼차함수의 1:루트3 관계와 관련이 있습니다.
두 경우 모두 이차함수의 최고차항 계수와 관계 없이 성립합니다.
3. 삼차함수
두 가지가 있습니다. 첫 번째는 매우 유명한 상황이죠. 직선 대신 이차함수인 경우에도 똑같이 성립합니다. (삼차함수와 이차함수가 알파에서 한 번 만나고 베타에서 접하는 경우라면 말이죠.)
이와 연관지어 생각해볼 만한 관계가 있는데요,
위 그림처럼 X좌표 길이 비가 1:3이 될 때, 초록 부분 넓이와 파란 부분 넓이가 같습니다. 사차함수의 3:1 관계와 관련이 있습니다.
두 번째가 굉장히 유용한 공식인데 의외로 잘 알려지지 않았습니다. 변곡점을 지나는 직선과, 삼차함수로 둘러쌓인 한 쪽 넓이가 다음과 같습니다. 두 쪽은 거기에 2까지 곱해주면 되겠죠. 양쪽 부분이 넓이가 같을테니까요.
4. 사차함수
역시 두 가지입니다. 솔직히 말해 이 두 공식은 요즘 평가원에선 보실 일이 없을거고(과거에는 나온 적이 있긴 합니다.) 사설이나 내신에 유용할 듯 하네요. 넣을까 말까 고민을 했으나 아는 사람은 다 안다는 공식이라 넣었습니다.
경험상 '둘 중에 뭐가 1/30이었지??!' 하면서 맨날 헷갈리는데, 공통접선 놈이 1/30이라고 확실히 알아둡시다.
제가 준비한 공식은 여기까지입니다. 소개드린 공식 외의 것들은 좀 과한 느낌이 있습니다.
한편 공식이 전부 '몇 분의 (b-a)의 몇 승' 느낌으로 생겼는데요, '몇 분의'에 해당하는 부분은 암기구요 '몇 승'은 쉽게 기억하실 수 있습니다. n차함수에 대해 n+1이 지수 자리로 가기 때문이죠.
칼럼은 여기까지입니다. 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예비가 290명대 많으면 300명 초반대까지 도는디 저 240등??정도 되는듯 가나...
-
아직도 숫자만 계속 뜨나요? 차단하고 싶은데 숫자 뜨는 건 거슬릴 거 같아서리...
-
모집인원에 그만큼 늘어나고 그런 건가
-
ㅇ.ㅇ
-
동국대 역사 학종 전화왔는데 건국대랑 어디가 좋을까요?하고 글 올리고 고민하는척 분탕해볼까
-
수1 수2 확통 원합니다 권당 만원씩 추가로 드릴게용 쪽지주세요 뉴런시냅스현우진시발점드릴
-
이번에 재수라서 정말 학교를 가야해서 최대한 안정으로 쓰고싶은데 맨처음에 텔그만...
-
단어장 매일 외우기&지문에서 모르는 단어 정리 이솔루션-실모 매주 돌리기 이정도로는...
-
좀안타깝네
-
수1 공부 0
삼수생각있고 미리공부하려 합니다 이번에 반수하면서 9모,수능에서 수1문제는 틀린적이...
-
패드로 과외하면 좀 불성실해보이나요? 여러분 생각이 어떰
-
근데 정시 입결표에 홍익대 바로 옆에 아주대가 있던데.. 이거 뭐죠?
-
금융,예금 적금 구분 못하고,주식거래 비트코인 그런 금융지식이 전무한데 사회초년생...
-
신은 죽었다 2
인하대 합격 이후 10일동안은 한림대 추합을 기다리고 있었는데 아쉽게도 예비...
-
근데 아직 나에 대한 인식이 5등급시절에 멈춰있는듯 0
아직 공부를 잘한다는 생각이 안 드는데 그냥 평균이하같음 아직도 그 때 기억이 ㅈㄴ 강렬해서 그런가
-
진학사는 왜 1
점점 등수가 밀리지...? 6칸 최초합에서 추합 끝자락까지 밀리는게 석 나가네
-
현역으로 고대 자전 입학 예정인 학생입니다. (25학번) 고대를 학업우수 전형으로...
-
정시 이월인원 초대박 기원 댄스파티
-
의류학 영상학 건축학 등등 마니아층이 있는과들은 추합이 돌아도 꼬리는 잘 안털리는...
-
멍청해서 울엇어 1
-
난 고2때 공부열심히 했는데도 물화생 455떴던 사람이기에 수시 비판할 자격이없음
-
사이트 보는데 우수사례 32222 세종대공대 이거 맞나… 이미 결제함 ㅠㅠ
-
오잉? 방장님 오랜만에 오사더니 그룹 삭제가 됐네
-
리스크지고 더 큰 그림 그릴건지 아니면 적당히 만족할건지 본인 선택이지 결국엔 음음
-
떨어진 분들 전부 재수 파이팅 이번엔 성공해요
-
정시 이월 몇명될지 모르지만 10~20명대일거같은데 이거 씹안정 맞음?
-
ㅋㅋㅋㅋㅋ 다시봐도 재밋
-
? 중앙대 경영학부 25학번 신입생 단톡방 안내 ? 신입생 여러분 안녕하세요!...
-
ㅠㅠㅜㅜ
-
그 막 노란 색 있고 가로칸에 대학 이름 있고 세로칸에는 과 이름들 적혀있는 표요.
-
제발 많은 수시 티오가 정시로 이월되게ㅜ해주세요
-
서강댄데 29분남았는데 베이스나 쳐야지~~~~
-
⭐️ 연세대학교 중앙새내기맞이단에서 25학번 아기독수리들을 환영합니다 ⭐️ 0
⭐️ 연세대학교 25학번 아기독수리들 주목 ⭐️ 안녕하세요! 연세대학교...
-
가, 나군에서 제가 잡아놓은 학교가 둘 다 7칸이어서요 7칸 중에선 거의 꼴지이긴...
-
2번문제에서 밑변의 제곱이 AP x BP 이게되는 증명을 1 번 3번초롬 줄을 그어서 설명해주실분
-
https://orbi.kr/00070843293 링크 들어가서 좋아요 눌러주기:)...
-
재수 진학사 0
메디컬 목표로 재수할 예정인데 그냥 진학사 칸수 4칸 이하로 원하는 과 다 지르는...
-
죽고싶어요 3
수시6광탈하고 재수해야되는데 뭐부터해야하죠 눈물나네요
-
경희대 붙고 걍 우리 애들이랑 계속 피방에서 롤왔는데 5시 45분부터 건대에서...
-
적당히 안가는게 답?
-
출퇴근 제외하면 현역이랑 아예 같은가요? 동사무소 근무는 어떤건가요?
-
지거국 수의대 교과를 면접이 있는줄 알고 썼는데 알고 보니 없었지만 그래도 작년...
-
저녁 메뉴 추천좀
-
5,6지망 내신 점수보고 최저맞춰서 갈거라고 넣은 간호학과... 지금은 8칸 뜨는...
-
윤사 과왼데 두렵다…. 절거 같네
-
연대랑은 비교도 안되는 재수생도 별로 없을것 같은 대학가게 생김 최저도 한문제차이로...
마지막 공통접선 공식 올해 왠지 쓸일 있을 느낌
본문 이차함수 부분에서 언급한 문제입니다!
https://orbi.kr/00061780743/%EC%88%982%20%EC%A0%81%EB%B6%84%20%EC%9E%90%EC%9E%91%EB%AC%B8%EC%A0%9C
기대 안하고 들어왔다가 생각보다 신박한게 많아서 개추 + 팔로 박고 스크랩 떠서 갑니다!
바로 스크랩
삼차함수 2번공식이 진짜 자주쓰이는데 생각보다 사람들이 잘모름ㅎ
그러게요 되게 유용한데 은근 안 알려짐
좋아요를 누를 이유가 있는 글..!
좋은 글 감사합니다 :)
삼차함수 변곡점 지나는 공식하고 그외 언급하지 않으신것들은 최고차항이 필요없나요?
최고차항은 전부 곱해줘야 합니다! 어차피 다 곱해줘야 해서 외워야 할 부분만 적은거였는데, 언급을 제대로 할 걸 그랬네요 ㅜ