칼럼) 도형의 축소와 확대(무등비편)
게시글 주소: https://test.orbi.kr/00063037320
"출제자는 도형 제시 상황을 긴 글을 통해 친절하게 설명해준다"
오늘 칼럼은 미적 선택자를 위한 글인데요
무등비 준킬러들의 변별력이 주로 공비 구하는 것에 맞춰져 있는 만큼 공비를 구하지 못해 시험 운영이 말리고.. 점수가 처참해진 경험 다들 있으신가요..?
(이상한 항등식들 세워서 열심히 계산했더니 순환구조에 빠진 경험 등)
오늘은 3가지 문제를 보며 합리적으로 공비를 구하는 방법에 대해 말씀드리려고 합니다
1) 2021 4모 28번
2) 2023 5모 28번
둘 다 아실 법한 문제라고 생각하는데요..ㅎㅎ 워낙 악명 높은 문제들이고 이 문제들로 인해 시험 운영을 망치신 분들도 많기 때문이죠
읽기전에 유의할 점은
제 글을 보며 한 번 같이 상황을 느껴보시길 바래요!
다양한 풀이 방법들이 존재하는 것도 알지만
결국 본인이 도형의 상황을 이해하는 것이 제일 중요하기 때문이죠!
1) 2021 4모 28번
초항을 구하는 것은 전혀 어렵지 않은 문제에요!
다만 공비를 구하는 것이 정말.. 어려운데 이런 문제에서 중요한 것은 쓸데없는 짓을 하지 않는 것 입니다
(갑자기 뭔 길이가 눈에 보여서 적는다던가..)
결국 우리가 구해야 하는 것은 공비이고, 공비를 구하기 위한 행동만 해주면 돼요!
원과 삼각형이 결합한 모형이 축소돼서 안에 끼이는 모습이 그려지시는가요? 선분 A1C1과 원 O2의 교점이 A2라고 출제자는 글에 적어놨어요( 원과 직선이 한 점에서 만날 때는 접한다)
즉, 상황은 원 02가 01, 선분B1C1, 선분A1C1 즉, 세 변에 측소돼서 접하고 있는 상황이에요!
.
.
.
다음 논리는 무엇일까요? 당연히 수선을 내려야죠! 수선을 내리고 나면/ 원 01와 원 02가 접하는 상황이므로 원 중심끼리 연결되고../ 기존 삼각형의 각 A1C1D1을 원의 중심과 점 C1을 이은 직선이 이등분하고../ 등등 길이 보이는 것을 알 수 있죠! 즉 결국 핵심은 상황파악이었어요!
2) 2023 5모 28번
비교적 최근 기출문제죠? 이 역시 초항 구하는 것은 그렇게 난이도가 높지 않아요(특수각 위주로 파악)
다만 공비 구하는 것이..ㅎㅎ 정답률 20프로대가 말해주죠
유독 이 문제에서 제 주위를 보면 항등식을 세워서 계산하는 친구들을 많이 봤는데요.. 이 역시 핵심 논리를 파악하지 못해서 그래요!
축소된 상황에서는 기존과 축소상황의 교점이 매우 중요한 역할을 한다
점A가 매우 중요한 역할을 하는 것이 보이실까요?
이 역시 원과 사다리꼴이 축소되는 상황인데 점A를 마치 못을 꼽아놓은 듯이 기준으로 하고 왼쪽 아래로 축소시키는 상황에요!
축소..하다가 어느새 탁! 하고 호E1D1위에 C2가 안착하네요!
.
.
.
다음 논리는 무엇일까요?
당연히 기존의 원의 일부인 호E1D1위의 점 C2가 기존과 축소의 교점이므로 이를 위주로 해석하는 것이 당연하고.. /이러면 직각삼각형이 눈에 보이면서 보조선 A1C2를 그어주는 게 당연해지고../ C1과 연결되는 것을 보고 할선정리, 코사인 법칙 등등 다양한 길이 보이네요! 역시나 상황파악이 핵심이죠!
제가 전달하고 싶은 요점은 출제자는 쓸데없는 글을 쓰지않고, 주어진 상황을 파악하도록 도와준다 에요!
저 역시 도형문제들을 만나면 제시된 글을 쭉 정독하고 문제로 들어가요! 주어진 쌩까고 무지성으로 길이, 각도 표시하는 건 정말 안좋은 습관이에요..
다들 도형에 대한 두려움이 사라지길 바래요 ㅎㅎ
다음번엔 삼도극 상황해석 칼럼으로 뵙겠습니다!
유익했으면 추천, 팔로우 좀 ㅎㅎ
0 XDK (+5,000)
-
5,000
-
점공 가능하시면 점공 부탁드립니당... 2차도 다들 ㅎㅇㅌ!
-
원점수가 같은게 문제였죠 。◕‿◕。
-
이건 사설틱해서 그런거고 수능에선 결국 내가 잘볼것이라고 믿었음
-
ㅈㄱㄴ 부자없나요
-
솔직히 BL보단 15
백합이라고 생각해요 。>‿<。
-
국어는 평가원하고 실모 괴리가 큰 분들이 많은 듯 17
점수가 퐁당퐁당
-
수학이새기는 오르질 않고 내 발목을 3년 내내 잡았음 근데 수능에서 내 손을...
-
!
-
과거에 쓰신분들 이거 정확했나요..? 스나인데 후한거같아서ㅠ 40프로 정도 들어왔고...
-
저 나름 수능 국어 백분위 100 출신인데 서점에 이거 훑어보다가 제가 무의식적으로...
-
내가 생각해도 에반거같아서 참고있음... 인간 심리 방어기제가 이렇게 힘이 쎈지몰랏으
-
수학'만' 공부해서 수학'만' 수능 응시하려고 합니다. 원래 뉴런들으려다가 수학...
-
#~#
-
떨리는건 정말 십분 이해하지만 이미 지원한 이상 바뀌는건 없다 걍 빨리 점공하고...
-
이러고 수능때 화작 94 뜸
-
오노추 1
-
유니콘 프로 goat 18
인앱 광고도 싹없애주네 저처림 맨날 폰붙들고 사는사람에게 추천
-
엣큥 。>‿◕。 3
히히 。>‿<。
-
외모가 뛰어나서 인기인건가요? 다들 고우시네...
-
노양심같음 1년에 하나씩 성적표 나오는데 1년만써야죠
-
컨설팅에서 쓰라고한 과가 폭나면 보통 환불해주나요?
-
보내달라고!!!!
-
설대 경영 어디까지 가나요?
-
24리트로는 그 해 입시만 치를수있는건가요? 아니면 23리트를 계속 묵히다 25년...
-
반박 안받는다
-
뭐 치킨 이런 배달음식도 먹는거 잘 못봤고 카페도 같이 갈 때 맨날 개인...
-
수능 영어를 대비하기 위해 마더텅을 사서 풀고있습니다. 제 현재 독해하는 순서가...
-
킥킥… 0
오랜만에 펜 잡으니까 손 떨림 ㅋㅋㅠㅠ 진짜 힘이 없는건지 내 미래때문에 떨리는건지..
-
이과는 과라는데 2
얼마나 학과가 중요한거임?
-
덴티큐가 보고 싶구나..
-
세지는 개재밋는데 사문이 토할거같아요 근데 백분위 생각하면 사문이맞는데 가슴은...
-
여러곳에서 빵날거같은 예감이 보이네
-
기출 다하고 이제 n제하는데 맛있는지 맛없는지도 많이 먹어본 사람이 알 수 있는거니까 궁금
-
대학마다 차이가 큰가요?
-
삼반수 끝, 홍익대학교 미술대학자율전공 합격 수기! 32
오르비엔 미대 입시생들은 별로 없겠지만 ㅎㅎ 여기서 수능 관련해서 도움 받은 게...
-
오늘도 고귀한 하루되세요 。◕‿◕。
-
무조건 튈건데
-
배터리 효율 계산하는데 이러네요
-
전 낼부터 슬슬 시작하려는데ㅠㅠㅠ 늦은건 아니겠지요..
-
ㅅㅂ 너 국어 2등급이냐? 상대가 저렇게 말하면 ㄹㅇ로 긁힐거같음 왜냐면 팩트거든
-
메가패스 샀다 0
-
문법다맞으로간신히2등급달성함 ㄹㅇ 다행
-
노래방임 3
선곡 하나 빨리
-
。◕‿◕。 너
-
알바재밋다 3
ㅎ
-
질문받아봅니다 4
해봐용
-
화1 독학서 2
메카니카랑 한완수 너무 좋은데 이런 자습서 화1은 없나.?
-
연경제는 빵이다 10
점공 693이 최초합인데 빵이 아니면 뭐임?
-
정상화 좀요
잘 한 번 읽어보고 제 핵심 요지를 알아주길 바래요!
그냥 그래프를 벅벅
좌표계를 벅벅
좋긴한데 시간이 좀 걸림.. 5분안에 풀어야되는데
문과라 살았다..도형 으악
하 문과황 ㅅㅂ
어쩌면 기하보다 도형을 사랑하는 과목
어멍리스 무등비 삼대장 중 두마리군
나머지 하난 뭐죠?
23뉴런에 있었는데 기억이 잘 안나네요 ㅋㅋ
음.좆기도씹육청의역작들이군.
2022 9모 27번도 쓸려다가 말음.. 난 그것도 어렵다고 보는데
이..게..
어림도 없지 피라미드 규칙따라 색칠하기
(나올 수 있나?)