미적분 28번의 본질과 변형 문항 12제
게시글 주소: https://test.orbi.kr/00063226018
28번aaa.pdf
* 수정수정한 문항입니다.
안녕하세요. 한성은입니다.
숟가락을 얹으러 왔습니다.
양 변에 1을 더하는 것도, 루트 씌워 f(x)를 구하는 것도, 대칭성을 이용하는 것도 28번의 본질이 아닙니다. 28번의 본질은 s축입니다. (농담) 첨부 파일 2번 문항만 다뤄봐도 f(x)를 구하는 풀이의 한계점이 보일꺼예요. 제가 설명한 영상 첨부합니다. 참고하세용.
변형 문항은 6번까지는 수학2 문항, 7번부터는 미적분 문항입니다. 모의고사에 수록할 정도로 가다듬지는 않았지만 연습용으로는 충분할 것 같습니다. 오류가 나오기 좋은 소재라 뭔가 실수가 있었을 법 하니, 문제도 의심하세요.
감사합니다. 행복하세요.
* 오류가 하나 발견되어 수정하였습니다. 10번에 조건 g(0)=0을 추가합니다.
* 두 번째 오류가 발견되어 수정합니다. 11번에 우변 함수를 수정합니다.
난이도 준답시고 우변을 이상하게 박았더니 대칭이 아닌게 되어 있었네요..
* 세 번째 오류가 발견되어 수정합니다. 11번에 조건 0<g(0)을 추가합니다.
f(x)가 x=1에서 극솟값을 갖는 경우를 놓쳤습니다. 이 경우를 풀면 답으로 2가 나옵니다.
0 XDK (+11,000)
-
10,000
-
1,000
-
그럼 미적분은 둘 다 아프겠네... 이거보고 확통기하했다
-
라섹 할까말까 6
다다음주에 하려고 하는데 좀 무섭네요 부작용도 그렇고 수술과정도 그렇고..
-
부비부비 0
쓰담쓰담
-
전 여친 학력 7
-
친구 사귀기 혼밥 안하기 혼강 안듣기
-
에이 설마~
-
전북엔 전주밖에 없네 전주 다녀와야하나
-
둘중 고른다면 다들 어디가실곳 같나요?
-
러셀 기숙 최상위관 분위기 좋나요? 분위기 안좋은데서 공부하는걸 병적으로 싫어해서...
-
제발요제발요헌민형다들었어요 ㅅㅇ언니가 my내적외적 롤모델임 근데 인설로...
-
님들도 해보셈 ㄹㅈㄷㄱㅁ
-
에휴이이이
-
이길듯 사관학교 용돈+무료조종사교육+의무복무기간도 조종사는 수당 많음+여행다니면서...
-
새내기 모쏠특) 성별 상관없이 조언 주든 말든 지좃대로 할거라 그냥 관람만 하는데...
-
학교생활,동아리생활하고 다시 수능보러 왔는데 치아교정하고 스마일라식하고 피부과다니고...
-
군수생 달린다 9
고곡고
-
고민의여지도없슴
-
흐흐
-
연애메타 그만 2
-
넷상에선 인구 5천만 국가 종합대학 공동4위가 좆으로 보이나? ㄹㅇ 이해불가
-
나 좋아하는 여자가 1명이라도 있어야 연애하건 말건 하지 난 여사친 자체가 없는데...
-
탐구 선택?? 0
작수 32123이고 (화미사문생명) 목표는 연대인데 과탐 2개(생지)랑...
-
사회 나가서 스스로 안 부끄러우면 그게 명문대임 반박 시 필자 자살
-
지금까지 쭉 안정3 자이독해랑 딸려있는 단어장으로 모르는단어외우고 다하면...
-
이젠 의미 없긴 한데 혹시 26년도에 시세무 쓰시는 분들 있으면 둘 다 칸수...
-
점공 1
점공 점점 느려지고 점공률 60퍼 넘으면 웬만한 사람들 다 들어왔다고 봐도 될까요?...
-
학교에타에 3
의대 25학번 의과학자드립이 개많은데 정상인가요
-
연대 송도보단 나으려나
-
5수하다 끌려가노 ㅋㅋㅋ
-
연고대는 명문대 아니라고 하는 사람이 하나도 없는데 서성한은명문대 아니라고 하는...
-
의대 휴학 1년이면 23년차 모쏠이네
-
감동이ㅜ있네 이거
-
이거 ㄱㄴ..? 0
-
가고 싶은 대학교가 성균관대인데요. 성대에서 과탐 가산점이 5퍼센트인데 사탐하면...
-
ㅅㅂ 명문대생이면 볼때마다 우울증 도질거라 안된다고....
-
생일 축하한다고 인사해줬는데 그래도 씹비호는 아닌거 아님? 호감까지는 바라지도 않음...
-
학벌 안보고 능력 안보고 돈 안보고 순전히 사람자체가 좋은거니까 티비보다가 문득 든 생각…?!
-
특히 시세무 시행정 시조경 시도행은 명문임 왜냐면 내가 있기 때문이다 반박은 받지 않겠어
-
사촌동생 재수해서 공사 붙음 앞으로 인생 잘됫나?
-
본인 감동실화 1
선배님 나이가어떻게되세요? 28입니다 우와..
-
Cc하거나 근처 대학 다니는 애랑 만나면 학벌따질일 없음
-
저는 올수 연계 체감 안 되던데 영어 수특 사는 사람 있나요
-
저대신 돈벌 수 있는 능력남원해요
-
학원에서 잠이 쏟아지는데 못잘때만 괴로웠지 수능공부자체는 재밌었는데.. 이런사람 잇나
-
여장남자 vs 남장여자 10
전자는 언박싱 이전까지 여자랑 구별이 안 됨 후자도 마찬가지임 뭐 선택함
-
돼지보다 똑똑한 정도 되고 말 통하고 착하면 되지
-
내일도 추우면 안되는데 12
내일은 나가는데........
-
만들어줌뇨? 자동글댓삭 매크로를 그새끼가 만들수잇을까 흐음
11번 문제에서 극댓값과 극솟값이 각각 6.2 인거를 어떻게 바로 알아내나요??
우변 함수가 코사인이 최대일 때 최소, 최소일 때 최대입니다.
그러면 좌변은 연속함수인데 최대 최소를 가져야하니까 증감이 바뀌는 곳이 필요함을 알겠습니다!. 근데 g가 정해지지 않은 상태에서 바로 f가 극대 또는 극소인 곳에서만 최대 최소가 결정되어야한다는 보장이 있나요?
예를 들어 f'(g(x))가 0이 되는 곳이 없어도 충분히 최대 최소를 만들 수 있지 않는가라는 것 입니다.. 궁금합니다ㅠㅠ
그 부분이 이번 28번과 마찬가지인데, 아래의 g값의 대소 때문에 '건너가야' 하기 때문입니다. 강의 보시고 문항들을 앞에서부터 풀어보면 이해 되실꺼예요.
네 g의 연속성을 위해서는 f가 극점이 되는 x값을 건너야한다는 논리를 써야만 되는거 맞는거죠!...최대 최소만으로는 필요충분이 아니라서 여쭤봤습니다
그런데 혹시 g(3)과 g(1) 값이 모두 3이 될 수는 없는건가요? 꼭 하나의 경우로 확정 되어야하는 상황인건가요ㅡ
g(0)<g(4) 때문에 극댓값을 왼쪽에서 오른쪽으로 건너가야 합니다.
g(3)과 g(1)이 같다고해서 못 넘어가는거는 아니지 않나요??
g에 대한 증감 조건이 구간별로 주어지지 않는 이상 바로 g값을 확정하기는 힘들어보입니다만..
g(2)가 f(x)의 극대점의 x값이 되어야 하고 g(0)~g(2)는 왼쪽, g(2)~g(4)는 오른쪽에 있어야 합니다.
넵 이제 완벽히 이해했습니다. 좋은 문제 감사합니다
11번 x=3일때 f(g(x))값이 3인데 이러면 g(3)=3이 될 수 없지 않나요?
헉.. 맞습니다. 이런.. 제가 잘못 생각했네요 ㅜㅜ
덕분에 오류를 알고 수정했습니다. 감사합니다.
f의 극솟값 x좌표가 4가 아니라 1일 수도 있지 않나요?
아 수정됐었네요
죄송 & 감사
좋은 문제 감사합니다. 28번 처음 해설 듣고 멘붕왔는데 문제 풀고 적용하면서 감잡을 수 있었어요.
고3학생입니다 덕분에 감이 좀 잡히는 거 같은데..
결정된 겉함수 치역의 범위에 따른 속함수의 범위/연속으로 인해 발생할 수 밖에 없는 극대,극소 해석이 속함수가 명시적이지 않은 상황에서 결과를 보고 역추론하게끔 평가원에서 기존의 추론방향을 바꾼 것 뿐인거라고 생각드는데 제가 잘 이해한 것이 맞을까요?
대충 맞는 것 같아요.
선생님 1번 해설 틀린거 아닌가요
g(x) 계수가 양수 아닌가요?
네. 헷갈렸습니다 ㅜㅜ 감사합니다.
썜 12번 g(x) 미분가능 조건 없어도 되나요?
f가 (2,1) 점대칭이고 우변이 (3,1) 점대칭이니까 g가 (3,2) 점대칭+연속이니 미분가능. 이렇게 다시 풀어봤는데 맞을까요?
미분가능 조건은 필요하지 않습니다. 대칭성으로 푸는 것이.. 결과적으로 맞긴 한데 논리를 채우기 힘들어 보이네요. g가 점대칭이 어떻게 나오나요? s축 ;; 경로 선택으로 풀어보세요.
쌤 다시 풀어봤어요. 11번 풀고나니 12번은 바로 풀리는거 같아요
11번에서 경로 선택이라는게 부등식 조건에서 g(0), g(4), g(6), g(10)은 확정되고,
g(x)를 완성할 때 g(1)에서 g(4)까지는 x의 양의 방향으로 쭉 가다가 g(5)에서 계속 쭉 가면 g(6) 값이 2가 되지 않으므로 f의 극대까지 되돌아갔다가 다시 쭉 가면 g(10)까지 이어지게 되니까 값이 해설이랑 같게 나오는데 이렇게 푸는게 맞나요?
훌륭합니다.
좋은 문제 만들어주셔서 감사해요 ❤️
1번 문제에서 실수 전체에서 f가 연속인데 해설에 있는 g에 -2값을 넣은 값을 만족시키는 h의 정의역 값을 f가 못가지는거 같은데 흠.. 제가 뭔가 잘못이해한걸까요?
1번 해설에 '최고차항의 계수가 음수이다.'를 '최고차항의 계수가 양수이다.'로 바꾸면 나머지는 문제가 없습니당.
선생님, 안녕하세요. 저 질문이 있어요. 써밋n제에 짧은 글로 한두쪽 실린 것처럼 <한성은의 수학공부법> 칼럼을 더보고 싶으면 어떻게 해야 하나요? 이거 책이나 블로그 포스팅은 없는지 궁금해요.
엄청나게 늦게 봤군요. https://blog.naver.com/sungeun_82 에 틈틈이 올릴 예정입니다.
선생님 늦게라도 답변주셔서 정말 감사합니다! 블로그에 사진 넘 멋지십니다 ㅎㅎ