24학년도 9평 수학 손해설지 및 간단한 총평
게시글 주소: https://test.orbi.kr/00064305235
2024 9월 평가원 모의고사 수학 by 익성T.pdf
시험 보느라 대단히 고생 많았습니다.
파급 수학 팀의 익성T에요 :)
오류 및 오타제보, 질문, 제안 등등 언제든 환영입니다.
간단한 총평을 남기자면 다음과 같습니다.
9번: 교육과정 해설서와 교과서에서는, '삼각함수의 그래프를 그릴 수 있다.'라고 명시하고 있고,
sin함수와 cos함수의 그래프의 관계를 말하고 있습니다.
10번: 수능 기출문제의 재활용입니다.
제가 강의에서 자주 사용하는 말인 '초벌 그래프'를 그린 후
계산으로 자신있게 밀고 나가야 합니다.
13번: 구간별 함수를 구성하는 두 함수식이 딱 봐도 유사해 보입니다. 직선대칭임을 활용하여 빠르게 그림으로 치고 나가셨어야 합니다.
14번: '추론'에 정당성을 부여할 수 있어야 합니다.
교과서에서의 지수함수와 로그함수의 그래프 주제는,
역함수 관계가 가장 중요하지만
'점근선'또한 힘주어 이야기하고 있습니다.
15번: '극한의 성질'문제풀이에서 '반복되는 작업'에 대한 캐치가 필요하고, 자신있게 치고 나가며 풀이해야 합니다. (실전은. 기세야.) 캐치하지 못 해도 상관 없으나, 시간은 제한되어 있습니다.
21번: sigma 조건을 어떻게 풀어헤쳤냐에 따라 계산량이 달라졌을 것입니다. ‘13'은 뒤의 확률과통계 문제에도 등장하네요.
확28: 발문을 정확히 독해하고, '기록'하면서 풀어야 합니다.
확률이 완전제곱으로 표현되는 경우를 잘 이해해보세요.
확29: 손풀이에는 모든 경우를 망라하여 놓았으나,
확률을 묶어 경우의 수를 셈하는 것으로 풀이했어야 합니다.
확30: '반복'되는 작업입니다. 케이스 분류는 맞는데, 케이스 분류가 아닙니다.
미28: 6월 모의평가에 비해서는 현실적인 난이도입니다.
'정적분으로 정의된 함수'에서 무엇을 배웠는지, 정직하게 풀이하면 됩니다. 다른 요행은 필요하지 않아용.
미30: '미적분'과목의 '미분법'은 무엇이든 다 할 수 있습니다.
변수를 두 개 이상 설정해도 괜찮습니다. 출제진을 믿으세요.
기29: 기출문제를 살짝 낯설게 틀어 상황은 그대로 출제하였습니다. 타원의 정의를 활용하여 선분의 길이의 차의 최솟값 조건을 선분의 길이의 합으로 바꾸는 것은 이제는 개념의 영역인 듯해요.
기30: 완성도가 높은 문항입니다. '벡터의 상등'을 정확하게 알고 있었어야 했고, 미지수 설정에 대한 거부감이 없었어야 합니다.
비주얼은 쉬워보이는데 막히는 문항들이 꽤 있을법한 시험지였습니다. 평가원이 뒷통수 때리는게 하루 이틀이 아니라 9평 수학이 쉽게 느껴졌다고 수학을 내려놓친 않으셨으면 합니다.
9평 이후 EBS 수특, 수완 선별좌표 최대한 엑기스만 추려서 올릴 계획입니다.
알다시피 최소한의 문제로 최대 효율을 낼 수 있다는 것은
당장 아래 글 링크를 보시면 아실겁니다 ㅎㅎ
20 수능 나형 28번 적중:
20 수능 FINAL EBS 나형 적중 자료(28문항):
좋아요, 팔로우 해주시면 놓치시지 않을 듯 합니다.
모두들 수고 많으셨습니다 ㅎㅎ
감사합니다.
최신 기출 중 특정 단원 특정 난이도만 무료로 풀고 싶다면?
모킹버드 n제 코너 소개 링크:
지인선 님이 참여한 싸맛과 실모를 풀고 싶다면?
해당 사이트는 아직까지 데스크탑에 최적화 되어있습니다.
데스크탑이나 태블릿 이용을 권장드립니다.
'가입만' 해도 N제 코너는 평생 무료이며
자작 실모 1회 추출도 가능합니다.
(그림을 클릭해도 사이트로 연결됩니다.)
(오르비의 허락을 맡고 올리는 게시글입니다.)
익성T 소개
모킹버드 소개글: https://orbi.kr/00063268579/
모킹버드 무료 모의고사: https://orbi.kr/00063739018/
지인선 N제 2024: https://orbi.kr/00062075350/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이터널리턴할까 1
메테오는 찍어야제
-
고작 한문제 나오는데 근데 또 한문제 차이로 2뜬적이 많아서 잡아놓으면 좋을것같기도하고
-
제발 ㅠㅠㅠㅠ
-
미적 88까지 누적비율 3.xx퍼로 흠... 미적 작년 92점 맞은얘가 올해 85...
-
너무많이해서물리는듯 단순레벨합치면 금장은 그냥 넘길듯... 솔직히 마스터턱걸이찍고재미없어짐
-
풀어보신분들 궁금합니다 국어 실모가 점수 올리는데 도움 많이 됐나요? 전 국어...
-
걍 넷플봐야지 0
새삼고1까지매일12시간씩게임하던내가대단해지네
-
재밌는 겜 없나 18
흠
-
조교하고싶은데 6
지원이나 해볼까
-
사문 45점 백분위가 몇으로 나올까요? 진짜 첫 수능이라 그런가 정말 피말리고 긴장되네요...
-
학이 벌잡아먹으면 이길거같깅한데 벌 짷짤이 못막잖아
-
바램4일차 0
무언가를 간절히 바라면 그게 이루어진대요 지구 37 2컷 4일차
-
훈t 인강을 내년부터는 못듣는다고 생각하니 들어보고싶네요 어떤가요???
-
시험시간은 100분인데 왜 14:00~18:00라고 되어있는건지 알려주실분...이게뭐야...
-
널 만날때부터 널 되게 유심히 여겼어. . . 되게 멋있고 처음부터 너랑 연인관계로...
-
논술을 보면 해설지에 올라와있는 풀이 이외의 풀이를 적으면 감점을 당하나요? 예를...
-
이창무 심특 1
제가 김범준이나 현우진을 실던개년둘중 하나를 듣고 이창무 쌤걸 들을려고 하는데 그냥...
-
무물 2
네
-
진학사 0
진학사 표본보고있었는데 국어1 수학3 영어3인데 과탐6,6 이신분계시네요. 진짜 아쉬우실듯..
-
올해 초에 의대 증원으로 입결 내려간다 이러더니 지금 진학사 보면 영향이 있는게...
-
생각을 끊기 힘듬
-
트라우마 on 2
Off
-
물리 vs 지구 20
내년 탐구과목 골라주세요 물리: 쌩노베 옛날에 영재고 잠깐 준비하면서 한번...
-
잘짜여진 콘솔 게임같은건 정서발달 도움되는것같음 책같은거 읽거나 다른 더 좋은...
-
여대 비추인가요? 12
그냥 성별갈등 떠나서 여대다니면 학점 따기 힘들다는 말도 많던데 부모님은 홀로...
-
짭요아정 머금 8
맛이똑같네요 가격도 얘가 더쌈 합격.
-
국어가 88점이 떠서 이 성적이 나오면 (화학 43점임 수정하는 거 깜빡) 서강대...
-
전철 타고 1시간 이내면 당장 출발할 의향 있음 추천좀요
-
걍 살찐건데..
-
논술 궁금한거 물어보십쇼 학교에물어봐야되는 행정적인거 빼고 다 받아드림
-
수험생 아들이 이번 정시에 가군 한양대 융합전자공학부를 고려하고 있습니다. 학부에서...
-
어차피 다음주부터 몇시간씩 굴러야되는데
-
나도나도 무물보 4
답변은 씻고 와서
-
악몽꿨다 0
메가 모의지원 싹 다 위험으로 떨어지는 악몽꿈…ㅋㅋㅋ
-
재미 또한 중요하기에
-
서점에 미적분1 문제집이
-
???: 저 가채점 때 xx점이었는데 백분위 95로 2 뜸... 분명 메가 채점에선...
-
국영수가 먼저다!
-
30퍼라는데 전체 4문항에서 1문항 못풀면 광탈일까여 확통 거의하나도몰라서ㅜ.ㅜ
-
현역이라 잘 모르겠어서ㅠㅜ 정시 이러면 대학 어디정도 갈 수 있나용 그리고 과탐...
-
올해 근의 공식도 모르고 과탐 아무것도 모르는 노베인데 1년만에 32231 떴다는 떡밥 돌았음?
-
ㅇㅇ?
-
보통 선택틀 공통틀 차이아래컷이랑 위컷중 뭘 말하는거임? 미적 1컷 88이라는건 올...
-
누가 더 백분위 높을것같으신가요?투표좀 부탁드립니다
-
88인게 행복할 수 있는 사람들도 있음
-
집앞벤치 입갤
-
86~89 중에서
-
엽떡 기다리며 무물하기 22
-
사문 39점인데 사문 2가 떠야 최저를 맞추는데 다들 어떡하셨을 건가요? 일단...
등급컷 ㅇㄷ?
등급컷은 메가나 대성이 잘 예측할 듯 해서 ㅎㅎ
미적분 28번 문항 오류있습니다. x<0 일때 넓이 하나당 1이 맞습니다.
아이고 오타 났네요. 감사합니다.
개인적으로 미분가능에 대한 언급도 포함해주시면 좋을것 같아요. 왜 a의 후보들이 n/4파이 꼴인지에 대해서요.
추후 배포되는 지면 해설지에는 잘 적어두겠습니다. 감사합니다!
n/4네요 ㅎㅎ 올리시느라 고생하십니다 ㅎㅎ
비주얼은 쉬워보이는데 딴딴한 실압근 같은 느낌이었어요 ㅎㅎ 수고 많으셨습니다.
13번 y=-b 대칭이 무슨뜻인가요?
예를 들어 f(x)를 y=a에 대칭시킨 식은 2a-f(x)입니다.
문제 상황에서는 y=-b에 대칭시켰다는게 바로 나오죠
(1/9+2/9)^2하는 이유를 모르겠어요. A에서 두개+B에서 두개+ A에서 한개 B에서 한개 해서 (1/9)^2+ (2/9)^2 + (1/9×2/9) 이렇게 나와서요
X_1=2, X_2=2 는 또 아래 2케이스가 있어요
(1) 처음에 3의 배수 나오고 두번째 3의 배수 아님
(2) 처음에 3의 배수 아니고 두번째 3의 배수임
3의 배수 나오고 A에서 뽑고 또 3의 배수 나와서 A에서 뽑고 3의배수 안나와서 B에서 뽑고 또 B에서 뽑는 방봅도 있지 않나요?
넵넵.
그래서 X_1=2 확률이 1/9+2/9 이고
X_2=2 확률이 1/9+2/9 이여서
저럴게 제곱식 써진거예요