sootak 모의평가 2회 문제지, 답지, 간략해설(스포주의)
게시글 주소: https://test.orbi.kr/0006598694
시험지.pdf
정답표.pdf
주요문항 간략 해설 및 접근방법
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 뒤에 한 명 있다
-
수능과 바둑이 비슷한 이유 (Ft. 숨은 그림 찾기) 2
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
얼버잠 0
-
1코 꽁으로 얻는 거잖아...부러움 +1 안해도 사회나가서 1살이득볼 수 있고
-
여기 댓글 보니까 자꾸 특정 교재는 오개념 없다는 댓글 다는 사람들이 있는데,...
-
https://youtu.be/mtHffXcQ3uY?si=ZoQS380c8UWmXWz7 최초합기원
-
진지하게 아파트 과외 전단지 붙여도 될 정도의 학력인가요,,,
-
아침 공복 운동 3
난 무식하니까 하는 방법 모르겟고 걍 공원 가서 30바퀴 돌고 푸쉬업 30 버피테스트 30 해야겟다
-
그리고 연고대 편입판으로 다시 돌아올거임
-
둘 다 멀어서 자취나 기숙사를 다녀야하고 학비걱정은 없습니다. 의견주시면 정말 감사하겠습니다.
-
생각을 해봣는데 2
나한테 지금은 진짜 소중한 시기인 것 같다. 이 시기를 순수하게 즐길 수 잇게 노력해야겟다
-
재입대 한 이유 0
군복이 내 수의가 되길 하고 생각했음 그런데 어느 교과님, 동기들 때문에, 이...
-
휴학하는것보다 더 큰 혼란과 파괴, 망가가 오겠죠 지금보니 그 누구도 학년 어레인지...
-
본인 23년도에 재수할때 기숙에서 했었는데 67->61되서 나옴(물론 지금은...
-
일케 사람이 없다니 ㅜㅜ 2시쯤엔 왓어야하눈데 엉ㅇ엉ㅇ
-
왜지
-
새벽에 똥글쓰다가 30렙 노랑색 되니까 개쪽이네이거;;
-
재수때 10키로 찐거 대학오자마자 3월에 그대로 빠짐 얼굴살만 빼고 ㅠ
-
주술회전 보고 똥 먹고 온 기분이라 한탄하듯 똥글 쌈 ㅈㅅ
-
잘 보고계신겁니다
-
ㅈㄱㄴ
-
그때 너도나도 씹덕친구들이 귀칼애니20화 보라고 히노카미카구라 원무 보라고 호들갑은...
-
아 왜케 춥지 0
긴팔 입어야하나
-
아직도 법 들이대면 다 인줄 아는 저능아 없지요? 법적용 자체가 그냥 코걸이...
-
에밀리아는 예쁘지만 ㅈㄴ 하차마려운데
-
일생겨서, 바빠져서 어쩔수없이 드랍한거 아니고 순수 노잼이라 드랍한 것들 그 비스크...
-
진짜재밌게본애니 2
너에게 닿기를 <<<< 진짜 마음이 치유되는 느낌.. 몽글몽글
-
ㄹㅇ이 명작인데..똥 먹는 기분도 안 드는데 쿄애니 방화 이후로 뭐 안 나오는 기분이라 슬프다
-
지금 수업 어떻게 나가고있나여
-
신에이 노우젠의 선택은 실존적 존재의 반항에 해당함
-
진격거&주술회전
-
늙기전에;; 중2코이 보시라구요
-
감정소모 같은거 없이 그냥 하하호호 맛있당 맛있어 담에또오자
-
왜 다들 안 잠 0
어휴다노
-
3수해서 성불하면 진짜성공한느낌인데 4수성불은 성공이 아니라 무사착륙 느낌임뇨......
-
흠
-
적당히 작화 ㄱㅊ고 너무 장편이지 않으면서 재밌게 볼 수 있는..근데 또 똥먹는...
-
하이큐 <<<<<< 반박불가임
-
손승연t 현강생 있으신가요? 사례할게요:) 대성 두각 시대 마이맥 강k 현장강의 강대 0
지금 대치나 분당 두각, 대구대치138 등 어느지점이시던 현장강의 수강중이신 현강생...
-
칼럼 쓰려고 즉석에서 풀고있는데 칼럼은 커녕 풀지도못하겠네//
-
OP곡 띵곡이라 요즘도 듣는데 원작 게임이 망해버린
-
흑집사 열심히 봐서 부코에서 ㅈㄴ 큰 브로마이드도 사옴ㅋㅋㅋㅋㅋㅋ
-
과외->보통 중하위권애들이 많이 받음 확통->중하위권애들이 거의 선택 확통...
-
블루록은 3수시작하면서 시간없어져서 중도하차하고 앙스타는 내가 게임자체를 안해서 걍 애니보고 넘김
-
주술 다 보고 나니 똥 먹은 기분이다... 아오 똥 똥 똥
-
OVA가 맛도리인 힐링물
-
건대는 훌리가 판을 칠정도로 애교심뿜뿜 동대는 잘은 모르지만 다들 만족해함 홍대는...
-
동점자 3명인데 수학 탐구 국어 영어 순으로 동점자 갈라서 수학이 그나마 높아서...
14번, 28번 풀이 부탁드려요... 간단하게 댓글로라도 괜찮으니...
14번
접점의 x좌표를 t라 합시다.
p+t=sqrt(e) - 포물선의 정의
a^2t=4pt (포물선 위에 점이 위치할 조건)
a^t ln a = 2p/a^t (접선의 기울기가 같을 조건)
식을 잘 정리해 주시면 a^2t=e가 나와서 두번째 식에 대입해주시면 pt=e/4가 나옵니다.
첫번째 식과 연립하면 이차방정식을 풀어 각각 구할 수 있겠죠.
ㅠㅠ 너무 어렵습니다
저도 14번, 28번 풀이필요한데... 댓글 써주시면 감사하겠습니다...
28번은 2Hm * 3Hn 해서 m이 1,2,3일때 나눠서 구하시면 되어용
엥...틀렸네요...죄송합니다 다시 구해봐야지
4점짜리 나오자마자 멘탈 승천... 4점짜리는 20번 말고는 모두 포기했어요.
3점과 4점의 변별을 확실히 한다고 한 것이 너무 과했나요..ㅜ
허허허허...할말이없습니다. 더 열심히할게요ㅠㅠ
전..15,21,30번이요..ㅠㅠ
//출제자님께서 직접 풀이해주셨네요... 제 풀이보다 훨씬 나으신거 같아서 그냥 지울게요
14번 접점 미지수 잡고 공통접선임을 나타내면 미지수가 p에 관해서 정리된 식이 도출됩니다.
결국 PQ의 길이는 p+접점의 x좌표이므로 p로 표현이 가능하며 이에따라 p에 대한 2차방정식을 푸시면 됩니다.
21번//
잘리는 부분 넓이가 5π. 접점P(a,b,c)라 하면 접평면, x+√3y=4, xy평면의 법선벡터들로 정사영 2번내리는데 필요한 코사인 값을 각각 구할수있음.
하나는 2/3 이고 하나는 c/3.
즉, 구하는 값은 5π X 2/3 X c/3 =10c/9π 의 최대 최소의 합. 따라서 c의 최대와 최소를 구해야 하는데 그림을 공간좌표상에 그려보면 b가 0일때 c가 최소 최대가 나옴을 알수있음.
따라서 a^2+c^2=9 와 a+√3c=4 를 연립 후 근과 계수의 관계로 c의 합을구함(최대,최소)
그러므로 답은 20√3π/9
근데 15번에서 왼쪽식속미분햇을때 왜 3x^3이 아니라 2x인가요????
f(x^2)함수의 한 부정적분을 F(x)라고 하면 F(x^2)을 미분하는 것이 됩니다. 그러면 속미분으로 2x가 나오게 되지요
1컷 몇점이에요..? 개 어려운데.. 난이도 하향하신거 맞나요? 1컷 어느정도 예상하고 출제하셨나요..?
ㅠㅠ 난이도 조절에 실패한 제 잘못입니다. 17, 18, 19, 20이 쉬워서 괜찮을 줄 알았죠.. 21, 29, 30정도가 최상위권과 상위권을 변별할 것으로 예상했는데 의외로 14, 15, 28번에서 큰 어려움이 있었던 것 같습니다. 2번 시행한 경험으로 다음에는 더 적절한 난이도로 돌아오겠습니다.
아 28번 이해가안되는데 중복조합??써서 푸는건가요? 알려주시면 감사하겠습니다 ㅠㅠ
a^p b^q c^r로 표현되는 건 이해되시죠? 이제 (p, q, r)의 순서쌍 개수를 찾는 문제가 되어버립니다. 여기서 p, q, r의 조건을 찾아서 중복조합을 이용해서 개수를 구하는 것이 접근 포인트입니다. 그렇다고 p+q+r=m+n에서 바로 3Hm+n라 하면 안되는 것이 c의 차수 r은 오른쪽 식에만 있기 때문에 n보다 커질 수 없습니다. 이를 반영하면 r=0일 때 2Hm+n, r=1일 때 2Hm+n-, ..., r=n일 때 2Hm이니 이들을 다 더하면 (m, n)의 성분이 나오는 것입니다.
아이고 어려워...
1회에 이은 불..
하.. 전왜 다들 맞추는걸 틀렷는지 ㅠ26,27번 해설좀 부탁드려요 ㅠ
26번은 어렵게 생각하실 필고없이보통 무리방정식 풀듯이 루트 한쪽을 넘겨서 제곱하고 정리해서 다시 제곱한 후 정리하면 삼각방정식이 나옵니다. 합성한 후 일반해, 시그마계산까지 호흡이 긴 문제일 뿐입니다.
27번도 타원의 방정식 세우고 x=1일 때 y를 표현한 다음 접선방정식 공식에 대입하면 직선 식이 나오니 넓이조건으로 타원방정식을 완성할수 있겠죠.