sootak 모의평가 2회 문제지, 답지, 간략해설(스포주의)
게시글 주소: https://test.orbi.kr/0006598694
시험지.pdf
정답표.pdf
주요문항 간략 해설 및 접근방법
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
드디어 시작됐다 0
가슴이 두근거리는구만 ㅎㅎ
-
10시에 처음으로 자본 날이 수능 전날이네 잘보고 오겠다노
-
더 잘라해도 잠이 안 온다 걍 씻어야지...
-
기상. 0
다들 불태워보자고
-
평가원과의 마지막 인연이길 바란다..
-
지금 일어남 최상의 개운함 성공이다
-
평소에는 6시에 일남
-
잘잔듯
-
7시간 잠 0
개운하다 ㅋㅋ 눈이 자동으로 떠지다니
-
저절로 깨버렸는데 문제는 머리가 무거움… 하지만 나는 지지않긔 씻고 도시락 싸야징 다들 잘 보십쇼
-
아쉽네 0
5시간은 잤는데 좀 피곤 왜 깬거노
-
아 파트 아파트 아 파트 아파트 아 파트 아파트 아 아하아하 0
아 파트 아파트 아 파트 아파트 아 파트 아파트 아 아하아하아 파트 아파트 아 파트...
-
10시에 잤는데 조그맘 더 잘까
-
ㅈ댓다 0
깨버렸다
-
어그래그래
-
지금 수학 하프모를 하나 더 풀까요 아니먄 사탐 모고를 하나더 할까요
-
약으로 깡으로 버티자..
-
ㅅㅂ!!!!
-
ㅋㅋ 11시반에 누워서 12시반에 깨서 지금까지 못 자는중 1
하~ 몰라 슈발 어케든 되겠지 ㅋㅋ
-
배아픈데 0
어떡하지
-
욘석들 다 자고있겠네 16
좋은 컨디션으로 일어나야할텐데...
-
나에게 천재일우의 기회가 왔다
-
의식 안 한다고 생각했는데도 , 자는 도중 계속 심장 빠르게 뛰어서 당황함
-
수능 파이팅 0
내가 수능 본지 1년이나 된게 안믿기네
-
기상 3
아주 완벽한 수면이어땅
-
05 내년나이 21살 공군 군수생각. 노베9등급. 인생이망하게생김. 1
고3때는 인서울은가겠지(공부안함) 현 재수때는 공부하겠지. (공부안함) 방금...
-
자작 문항 하나입니다! https://orbi.kr/00058891974...
-
항상 국어모의고사 볼때 글읽는 속도가 느린데도 불구하고 빠르게 다 읽으려고 해서...
-
현 고2고 3모때 화생43, 6모때 물생33, 9모때 생+사문 34 받았습니다....
-
저 수능 세번 쳤는데 전날 제대로 잔 적 한번도 없었어요. 삼수때는 기숙에 있었어서...
-
캬
-
11월이면 좀 뒤1져라... 한동안 잠잠하다가 수능날 밤에 왜 즤랄인 것이냐......
-
설수리 수시 입학생,설수리 정시 입학생은 각각 고3 현역 졸업생이 대부분임?...
-
더자야되나..흠
-
수험생활 때 몇 시에 자고 이런 거 딱히 안중요한 거 같음 나는 수능 볼 때...
-
수능 보고 있는데 북한이 쳐들어오면서 핵 쏘면 어떡함? 물국어 1컷 98 예방차원을...
-
못 자겠어
-
화들짝 일어나버려서 아직까지 잠이 안 옴 미쳐버리겠네..
-
님들 ㅃㄹ 영어 듣기 빼고 독해 문제만 푸는데 몇분잡고 풀어야됨? 5
자기전에 풀고잘라구요 참고로 07이에용
-
이게 국어에서 나오면 이과들 멘탈 갈릴 텐데 쫄지 말고 성리학에서는 이와 기를...
-
D-365
-
저분이 평가원 스파이도 아니고 너무 매달릴 필요는 없을텐데 혹시라도 필요하신 분...
-
ㅈㄱㄴ
-
잘되면 좋겠다
-
잠을 포기하고 연계공뷰나 할까요 아니면 눈이라도 감고 4시간을 보낼까요
-
솔직히 10대한텐 인생의 전부 맞지 ㄹㅇ ㅋㅋ 이거때매 초등학교부터 교육받은건디...
14번, 28번 풀이 부탁드려요... 간단하게 댓글로라도 괜찮으니...
14번
접점의 x좌표를 t라 합시다.
p+t=sqrt(e) - 포물선의 정의
a^2t=4pt (포물선 위에 점이 위치할 조건)
a^t ln a = 2p/a^t (접선의 기울기가 같을 조건)
식을 잘 정리해 주시면 a^2t=e가 나와서 두번째 식에 대입해주시면 pt=e/4가 나옵니다.
첫번째 식과 연립하면 이차방정식을 풀어 각각 구할 수 있겠죠.
ㅠㅠ 너무 어렵습니다
저도 14번, 28번 풀이필요한데... 댓글 써주시면 감사하겠습니다...
28번은 2Hm * 3Hn 해서 m이 1,2,3일때 나눠서 구하시면 되어용
엥...틀렸네요...죄송합니다 다시 구해봐야지
4점짜리 나오자마자 멘탈 승천... 4점짜리는 20번 말고는 모두 포기했어요.
3점과 4점의 변별을 확실히 한다고 한 것이 너무 과했나요..ㅜ
허허허허...할말이없습니다. 더 열심히할게요ㅠㅠ
전..15,21,30번이요..ㅠㅠ
//출제자님께서 직접 풀이해주셨네요... 제 풀이보다 훨씬 나으신거 같아서 그냥 지울게요
14번 접점 미지수 잡고 공통접선임을 나타내면 미지수가 p에 관해서 정리된 식이 도출됩니다.
결국 PQ의 길이는 p+접점의 x좌표이므로 p로 표현이 가능하며 이에따라 p에 대한 2차방정식을 푸시면 됩니다.
21번//
잘리는 부분 넓이가 5π. 접점P(a,b,c)라 하면 접평면, x+√3y=4, xy평면의 법선벡터들로 정사영 2번내리는데 필요한 코사인 값을 각각 구할수있음.
하나는 2/3 이고 하나는 c/3.
즉, 구하는 값은 5π X 2/3 X c/3 =10c/9π 의 최대 최소의 합. 따라서 c의 최대와 최소를 구해야 하는데 그림을 공간좌표상에 그려보면 b가 0일때 c가 최소 최대가 나옴을 알수있음.
따라서 a^2+c^2=9 와 a+√3c=4 를 연립 후 근과 계수의 관계로 c의 합을구함(최대,최소)
그러므로 답은 20√3π/9
근데 15번에서 왼쪽식속미분햇을때 왜 3x^3이 아니라 2x인가요????
f(x^2)함수의 한 부정적분을 F(x)라고 하면 F(x^2)을 미분하는 것이 됩니다. 그러면 속미분으로 2x가 나오게 되지요
1컷 몇점이에요..? 개 어려운데.. 난이도 하향하신거 맞나요? 1컷 어느정도 예상하고 출제하셨나요..?
ㅠㅠ 난이도 조절에 실패한 제 잘못입니다. 17, 18, 19, 20이 쉬워서 괜찮을 줄 알았죠.. 21, 29, 30정도가 최상위권과 상위권을 변별할 것으로 예상했는데 의외로 14, 15, 28번에서 큰 어려움이 있었던 것 같습니다. 2번 시행한 경험으로 다음에는 더 적절한 난이도로 돌아오겠습니다.
아 28번 이해가안되는데 중복조합??써서 푸는건가요? 알려주시면 감사하겠습니다 ㅠㅠ
a^p b^q c^r로 표현되는 건 이해되시죠? 이제 (p, q, r)의 순서쌍 개수를 찾는 문제가 되어버립니다. 여기서 p, q, r의 조건을 찾아서 중복조합을 이용해서 개수를 구하는 것이 접근 포인트입니다. 그렇다고 p+q+r=m+n에서 바로 3Hm+n라 하면 안되는 것이 c의 차수 r은 오른쪽 식에만 있기 때문에 n보다 커질 수 없습니다. 이를 반영하면 r=0일 때 2Hm+n, r=1일 때 2Hm+n-, ..., r=n일 때 2Hm이니 이들을 다 더하면 (m, n)의 성분이 나오는 것입니다.
아이고 어려워...
1회에 이은 불..
하.. 전왜 다들 맞추는걸 틀렷는지 ㅠ26,27번 해설좀 부탁드려요 ㅠ
26번은 어렵게 생각하실 필고없이보통 무리방정식 풀듯이 루트 한쪽을 넘겨서 제곱하고 정리해서 다시 제곱한 후 정리하면 삼각방정식이 나옵니다. 합성한 후 일반해, 시그마계산까지 호흡이 긴 문제일 뿐입니다.
27번도 타원의 방정식 세우고 x=1일 때 y를 표현한 다음 접선방정식 공식에 대입하면 직선 식이 나오니 넓이조건으로 타원방정식을 완성할수 있겠죠.