강사 중 제대로 푸는 것을 본적이 없는 문제
게시글 주소: https://test.orbi.kr/00066299662
[5탄 문제는 어떻게 읽어야 하는가?]
아직도 이 문제를 제대로 푸는 사람, 강사, 인강을 본 적이 없습니다. (있다면 제보 부탁드립니다)
이 문제를 제대로 풀지 못 하는 이유는 아마 문제의 구조를 잘 모르기 때문이라고 생각합니다.
거의 모든 해설은 박스 밑에 있는 조건으로 먼저 식을 처리하고, 좌표평면에 y=x, y=-x 그래프를 그리고 케이스분류(?) 같은 것을 하며 그래프를 그리다가, 삼차함수를 잘 갖다가 접하게 붙여, (운이 좋으면) 빠르게 개형을 찾아 풀이합니다. 잘 되던가요?
이것이 과연 평가원이 의도한 풀이일까요?
박스 밑에 있는 조건은 식을 간단히 하기 위한 조건으로 준것일까요? 그런 것을 평가하려고 하는 기관일까요? 심지어 박스 위도 아니고 아래에 줬는데?
문제로 학생들의 능력을 어떻게 평가할까 고민 하는 것을 직업으로 가지고 있는 연구원들과 그 기관인데... 너무 하지 않나요?
(1) 문제 잘 읽기
우선 이 문제는 최고차항이 양수인 삼차삼수가 (가),(나)의 조건을 만족시킵니다. 그리고 f(0)=0과 f'(1)=1일 때, f(3)을 구하라는 묻는 것이 있습니다.
(1-2) 문제 잘 못 읽기
(가) 조건에서는 f(x)-x=0이 두 근을 갖습니다. 그리고 (나)조건을 봐야겠죠? 아마 여기서 거의 대부분 문제를 잘 못 읽습니다. 가, 나 조건을 함께 봐야 한다면 문제 형식은 저런식으로 주지 않았을 겁니다.
대부분은 문제를 이렇게 함부로 고쳐서 읽는 것 같습니다,
사실 심지어 이렇게 읽은 풀이도 많습니다.
알아서 복잡하게 만들고 있다... 이런 느낌입니다.
(2) 조건 해석하기
(가) 조건에서는 f(x)-x=0이 두 근을 갖습니다. 그리고 나서 (나)조건을 보겠습니다.
(가) 조건에서 우리는 f(x)-x가 두 근을 갖는다고 보았을때 식을 만들 었을 것이고 그 다음 (나) 조건을 봐야합니다. 그렇다면 f(x)-x=g(x)라고 만들었으니, (나)식은 g(x)=-2x 의 근이 두 개라는 말이 됩니다.
(3) 추론 연산하기
이제 g(x)와 -2x와의 위치관계를 보면 됩니다. 그렇다면 밑에 있는 조건이 왜 f(0)=0이고 f'(1)=1이라고 주었는지 알 수 있을 겁니다.
이해가 되시나요?
f(0)=0 ----> g(0)=0
f'(1)=1 ----> g'(0)=0
그래프가 한 번에 찾아 지시나요?
물론 이 문제는 가르치는 사람의 입장에서 열심히 분석해야하는 문제입니다. 수험생 분들이 이런 평가원의 의도를 찾으려 한다면 언제나 방향성을 잡아줄 선생님이 필요할 겁니다. 평가원 기출 문제는 엄청난 보물입니다. 이런 문제가 30년치가 쌓여있는데... 문제를 풀이하고 단순 소비하는 형태로 지나치지 않았으면 합니다.
수험생 여러분 항상 응원합니다.
1탄 [글의 시작 - 묻는 것에 따라 어떻게 계획하고 행동을 할 것인가 생각하자]
2탄 [해설지가 뭐 이래...? 해설이 아니라 계산지 아닌가....? (feat. 수능 13번)]
3탄 [수능 5번, 맞힌 문제로 공부하기]
4탄 [추측과 정당화, 수능 12번 (부모의 마음을 가진 평가원)]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
거기서 맨날 설카포연고서성한떨 지잡의 이러고 노는 애임 하루종일 의까짓하는 중...
-
전에 지구과학 책 뭐 추천받았는데 기억이 안남 4글자였고 '스'로 시작했던거 같음...
-
동네 독재랑 재종둘다되는학원에서 독재도 100퍼장학이라길래 꽁짜삼반수할생각에...
-
2월 3일 CL 경기에는 과연 원딜로 누가 출전할까 0
스매시 2중으로 뛰게 하면 프런트 조지러갈 준비 완료함 금재 혹사시키지 말아라
-
대 서 강 ㅋㅋㅋㅋㅋ
-
궁금
-
18수능 세대입니다 의대목표로 다시 공부해보려고하는데 지금은 수학이 미적 기하 확통...
-
여캐일러 투척 4
수능 정복 13일차
-
그레이엄 하먼은 아직 살아있는데 문항 출제 잘못하면 평가원 또 사과해야하는거 아닌지...
-
꽤나 오래된 역사를 지닌 곳
-
동대 입학처 오늘 일 함?아는사람
-
동아의 카관의 let’s go
-
국시 자격 여부는 교육부 소관이라고 그럼 불인증먹어도 국시칠수있을듯..? 교육부...
-
잇올도착 1
투데이스타트
-
경지를 향한 단련이 필요하다
-
ㄹㅇ
-
오늘 밤에 하면 마감되어있을까요?ㅠ
-
손 핏줄이 갑자기 무슨 헬창 급으로 올라오는데 이거 왜이럼
-
10만원 넘지 않고 스테이크 맛있는 뷔페로요
-
나는 왤케 4
아파트 외벽에 붙어서 도망치는 꿈을 많이 꾸냐 전생에 도마뱀이었나
-
개빻았는데 빨리자서 다행이다
-
수분감 수1특 5
솔직히 틀딱기출문제 거른거 많음...
-
영어는 그래도 약간? 재밌으니까
-
춤추는 너의 모습은
-
비도 조금씩 오는데 달리니까 시원하고 좋아요
-
희망을 가chill guy
-
많을라나 막상 학교첫날갓는데 마음에들면어카지
-
술이 아직도 안 깨서 어지러운데 ㅅㅂ 인생
-
인강 한번 듣고 그 내용을 어케 다 기억하고 적어내림? 이게 될 정도면 애초에...
-
화작 교재 추천 0
화작 기출교재 어떤게 좋을까요? 강의는 안 들을 예정인데 뭐가 가장 괜찮을지 추천좀 해주세요
-
파송송 계란탁
-
자야지 0
-
얘 태어날때 데뷔했는데
-
집가는길 1
으어
-
공공인재는 최초합해서 4년 반액장학이고 경영은 추합 기다리고있는데 장학금...
-
오르비는 망했어 2
-
잠버릇 고약하네..
-
으으 2
피곤피곤
-
단국약 예비 31번, 전북약 실공10등 둘중 하나라도 될 가능성 있을까요?
-
주가조작으로 잡혀가셨다네요 조의금은 여기로
-
야추 ㅇㅈ 4
'옯붕아 이리와서 앉아봐라.'
-
사랑해요
-
진짜 ㅇㅈ마렵네 2
오랜된 생각이다
-
동아리 195화 3
이게 완결이고 뒤에 화는 안 볼거임뇨
-
기차지나간당 7
부지런행
-
고전소설 진짜 한 20분 박았는데 3틀하고 멸망함 아침에 이거 줄거리까지 보고갔는데...
-
명절이 싫다 0
싫어
-
얼버기 1
ㄹㅈㄷ 갓생이네요
-
다 자셈 ㅇㅇ 7
난 안 잠
-
어느정도 반인가요? 시대 낮반보다 강대스투가 낫다는데, 이정도면 스투 가는 게 나을까요?
팔로우 박습니다
감사합니다.
아마 강윤구 강사라면 저렇게 풀듯요. 방정식을 풀 때 고정곡선 = 직선/상수로 고치는걸 강조하는 사람이라 f-x를 고정곡선르로 두고 0과 -2x를 직선상수로 두지 않을까? 싶네요
근데 푸는 영상은 모르겠습니다 ㅈㅅㅎㅎ
고정 곡선과 직선 두개로 다들 풀더라고요. 아마 평가원 기출이니 대부분의 선생님들 책에 해설이 있을 것입니다. 한번 확인 해보겠습니다. 감사합니다. 혹시 확인을 해주신다면... 사례하겠습니다.
호
재밌어 보이길래 풀어봤습니다 ㅋㅋㅋㅋㅋ
해설 강의 찾아보시면 더 재밌을 겁니다
정병호