[칼럼]논술에서도 쓸일 없는 테일러 급수 증명법 (ver.고등학생)
게시글 주소: https://test.orbi.kr/00066474042
첫 글 쓴지 얼마 안되서 두번째 글을 써보네요... 그리고 이륙 지원해주신 분들 모두 감사합니다!
제목대로 테일러 급수는 사실 논술에서도 써먹을 기회 자체를 거의 주지 않습니다... 하지만 난 극한 문제를 풀 때 테일러 급수 매번 쓰면서 너무 찝찝했다! 하시는 분들은 한번쯤 읽어 보시면 좋을 것 같습니다.
테일러 급수란 초월함수를 다항함수의 합으로 나타내는 방법입니다. 예를 들자면
과 같은 식의 방정식입니다. 이를 전개하면
과 같은 모양이죠. 여기서 우리가 주로 쓰는 부분은 이차항 이상의 부분을 싹 다 잘라내고
로 근사한 부분입니다. x가 0에 가까워질수록 1차항보단 2차항 이상의 부분의 오차가 매우매우매우 작아지기 때문에 이렇게 근사할 수 있는 것입니다.
그럼 지금부터 테일러 급수의 증명을 간단하게 적어 볼게요.
급수로 구하고자 하는 함수를 f라 둘게요. 고등학교 과정에서 배우는 모든 초월함수는 무한히 미분 가능하니 f도 무한히 미분 가능하다고 두죠. 그러면 미적분의 기본정리에 의해
가 성립합니다.
위 식을 부분적분하는데 u=f'(t), v'=1로 두고 적분상수 C=-x로 두면 다음과 같은 전개가 가능해집니다.
v'=1이면 v를 적분하면 t+C가 나오죠. 여기서 적분할 인자는 t이기 때문에 적분상수를 x로 둘 수 있게 됩니다.
자. 이번엔 오른쪽의 (t-x)f''(t)를 다시 부분적분해 보겠습니다.
여기서 f 위의 괄호 안의 숫자는 f를 미분한 횟수를 표현하는 방법 중 하나입니다. '(dot)을 많이 찍다 보면 갯수 세기가 불편하잖아요?
한번 더 전개하면
이를 계속 반복하다 보면 이러한 규칙이 생깁니다.
이렇게 다 더하면
라는 식이 나옵니다.
함수 f는 무한히 미분이 가능한 함수라 가정했고 대부분의 초월함수가 실제로 그 조건을 만족하므로 n은 무한히 커질 수 있겠죠?
이때 어지간한 초월함수라면 n!의 증가량이 분자 부분((t-x)^n f^(n)(t))의 증가량보다 아득히 크기 때문에 마지막 적분 기호는 n이 무한대로 발산한다면 0으로 수렴합니다.
(이 부분은 대학 가서 적분의 평균값 정리를 배워야 자세히 설명이 가능한데... 일단은 이렇게 대충 짚고 넘어갑시다)
따라서 f(x)는 다음과 같이 새롭게 정의할 수 있습니다.
이것이 그 탈 많은 테일러 급수의 유도 과정입니다.
그럼 이제 실제로 자주 쓰는 초월함수 몇 개를 넣어서 한번 계산해 보죠.
먼저 f(x)=e^x입니다.
f'(x)=e^x, f''(x)=e^x, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
이번엔 로그함수 f(x) = ln(1+x)입니다.
f'(x) = 1/(1+x), f''(x) = - 1/(1+x)^2, f'''(x) = 2/(1+x)^3, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
다음은 사인함수, 코사인함수를 해 볼까요?
이번에도 a=0을 대입하고 미분해서 계산해 보면
나머지 삼각함수들은 사인, 코사인처럼 직접 유도되는 것이 아니라 다른 방법으로 유도합니다. 그래서 그 과정 설명은 못 해드리고... 가장 자주 쓰이는 탄젠트의 식만 짧게 보여드리겠습니다.
네... 이 친구의 계수는 얼핏 보면 불규칙해 보입니다. 이는 나중에 베르누이 수열이라는 걸 배운 뒤에 알아보시는 걸로...
다른 초월함수들은 고등학교 과정에선 거의 안 배우죠? 그러니 초월함수 탐색은 여기까지 하겠습니다. 수식 넣기 힘들어요
마지막으로 테일러 급수는 대체 어디까지 근사해서 써야 하느냐! 에 관한 내용을 조금이나마 적겠습니다.
대부분의 극한 문제에서는 분모 분자가 같은 차수가 되도록 문제를 만듭니다. 이러한 경우에는 보통 1차항(코사인의 경우는 2차항)까지만 근사하면 답이 나옵니다.
하지만 간혹가다 분자에는 사인 1개 x 1개나 탄젠트 1개 x 1개 줘 놓고는 분모에선 3차항을 준다던가... 하는 경우가 있습니다.
뭐 이런식으로 말이죠. 이때는 분모와 차수가 같아지는 차수까지 근사를 해 주셔야 합니다. 가령 위의 식에서는 사인을 3차까지 근사해서 답은 1/6이 나옵니다.
여기까지 테일러 급수의 증명과 활용시 주의점에 대해 부족하게나마 적어 봤습니다. 이걸 보고 수학에 흥미가 생기신다면 좋겠네요... 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좀 이상하긴 함 틀닥새끼가 나이먹고 유세부리냐고 하면 난 현역때부터도 이생각해서 안깝치긴 했음 ㅇㅇ
-
확통이랑 표점차이 줄어듦 애초에 미적이 어려운 문제 도장깨기 성공하면 확통보다...
-
외대 사회 T2 0
시간 10분 남기고 막히는 거 없이 다 적어서 들떠있었는데 커뮤 여론이 다...
-
공통 9번, 10번이 4점임을 감안하면 미적 27번 난도는 좀 문제 있는 거 같긴 해요..
-
내가 갈거니까 여긴 쓰지 마라
-
언매92 미적85 영어 1 임 ㅎ… 그무엇도 1등급인지 모름 그래도 가보는거 추천?
-
소름돋아
-
작수12번틀리고표점134 내인생을바꿔놓음
-
Step나눈건지 모르겠음
-
빵 되게 많을 것 같음
-
건대 상경에서 경희대 회계세무학과 가는건 별로일까요? 1
회계사가 꿈입니다.
-
오지개념 스텝2 까지 해야 이신혁쌤 따라갈수 있을까요? 1
겨울방학부터 이신혁쌤 현강 들으려하는데 스텝2 까지 꼭 수강해야할까요?
-
과는 수교 생각하고 있습니다. 집이 대구 근방이라 경북대 고민중… 집안 형편이...
-
과탐노베임 근데 다들 막 표점차 이정도여도 사탐이 쉬워서 이득이다 이러길래 그...
-
ㅈㄱㄴ
-
중대 논술 5
개좆망~ㅜㅜ
-
망각률이 엄청 많이 차이남 ㄷㄷ 이런 이유는 각성(깨어있음) 동안에 여러 자극들이...
-
문제도 못풀고 최저도 안될 확률 높은데 집에서 쉬어야지..
-
설약 입결 0
표점 얼마여야 하는지 구체적으로 알고 싶습니다 그리고 작년 시대 입결표 보니까...
-
2학년 내신으로 정법을 하긴 했는데 3학년 선택이 세지사문이라 수능까지 같이 하는게 나을까요?
-
의문이었는데 생각해보니까 나같아도 국영수 5등급한테 내 몸 수술 안맡기고 싶을듯
-
1컷 41이면 최저맞추는데 면접준비 할까요? 아님 걍 하지말까요...솔직히 가능성없어보이는데
-
수학 29번 실수만 안했어도.....
-
ㅇㅈ 1
걍 싼거 삼
-
흠
-
2컷 39점
-
너 짱 0
너짱
-
하 (논술로) 전과 하고싶은데 ㅠㅠ
-
디시보고 느낀점 1
이런 사람들이 의사가 된다라..
-
ㅠㅠ 48도수 거의없을 거 감안해도..... 해볼만하진 않으려나 ㅠㅠ
-
지금 진학사변표 0
지금 통합변표인지 분리변표인지 아직 발표안한 대학들은 진학사에서 그냥 자체적용한건가요??
-
옥린 옥루 유씨 오렌지 (이새기가 제일 악질) 이런거 예상하다가 나온거: 똥을 싸질렀다 킥킥
-
좃.뺑이 공짜 인력으로 불려서 일하고 있으니까 먹을 거 찾으신다고 교수실 가서 사탕...
-
메이플 탄지로 3
스우까지 컷 캬캬
-
똑똑한애들이 설공가야됨 29
원래 둔재들이 메디컬가고 진짜 똑똑한 애들이 설공가야된다고 봄 난 범부라 서울대가면...
-
몇개 맞추셨나용….. 인칼분들만 해주세요‘ㅜㅜㅜㅜㅜ 냥논 냥대
-
님들이면 어디감? 참고로 삼수생임
-
국어 선택 0
국어 강사 누구 들을지 고민중인데 주간지랑 이것저것 빵빵해서 김승리 들을까요?...
-
윤도영쌤이 2026년도 탐구선택가이드 올릴때까지 선택미룰것같은데 그동안 국영수만 할까
-
미적 2컷 2
미적 1틀 76점인데 2등급 ㄱㄴ? 표점때문에 가능한가
-
나 답은 맞은거같은데 필력이 개판이라 기대가 안되네
-
고대 사과탐 통합변표 기원 1일차
-
근데 25는 뭔 복을 타고났길래 6,9,수능에 다나오냐 9
그것도 29,30 같은 주요 문항에만
-
일단 3합3 맞췄을 사람들이 많지 않을거고… 수학은 거의 항상 백분위...
-
이거 매년 개정되는 강좌인가요?
-
난 메쟈의 아니면 안가
-
3.8X/4.3 이론물리학 연구실 진학예정 심심합니다. 학업적인 것, 대학생활...
-
질산칼륨
-
고대 세종 약학 11
난이도: 중하 타임어택: 최상 (소문항 10문제를 90분 안에...)
-
3모 88 5모 85 6모 92 7모 92 9모 92 10모 86 수능 100 더프...
테일러씨는 참 똑똑하구나
한무 부분적분으로 테일러급수 느낌있게 증명하기 ㄷㄷ
멋있네요
전 개인적으론 이것보단 미분을 이용한 증명이 더 멋진데... 엡실론 델타를 여기서 설명할 수는 없으니 ㅠ
이것도 올려주신다면 재밌게 읽어보겠습니다 ㅎㅎ,,
이건 차마 설명을 못하겠네요... 너무 풀어쓰기가 힘들어유...
예전에 저걸 통해서 오일러 등식 도출할때 참 수학 재미있다고 생각했었는데...
좋은글 감사합니다