엡실론 2회 19번 질문입니다 ㅠㅠ
게시글 주소: https://test.orbi.kr/0006652515
수학적 확률에 대한 개념에서 털렸다고 생각하는데요 ㅠ
저는 단 공의 모양과 크기가 같다라는 보기조건을 보고 결과를 보았을 때 같으므로 순서가 없구나 해서 1 1 을 a,b로 나누지 않았는데요 이에 대해 자세한 설명부탁드립니다 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅆㅃ
-
수특 독서 0
이거 텍스트량 엄청 많은거 맞죠? ㅠ
-
면도할때 0
쉐이빙폼 써야됨? 돈 없어서 폼클렌징할때 거품으로 밀어버려도 되나요
-
시도안함ㅅㅂ
-
드디어 휴가다 2
오랜만에 느껴보는 바깥공기.. 아침은 역시 든든한 국밥입니다
-
아파트 계단에서 미끄러져서 발목 나감 ㅋㅋㅋㅋ 에휴 오늘 학교는 다갔다
-
3월에 나온거 보지 않앗을라나
-
유베가는 길 다 들으면 다른 강좌 뭐가 좋아요? 메가 대성 둘다 있습니다
-
행복하자 8
행복하자.우리
-
1월까진 언매 수학 탐구 개념복습하면 되나요?
-
그거슨 빼빼로.
-
예열지문 풀 때 0
문제 안풀고 지문만 읽고 넘어가도됨?
-
자꾸 그래프 접점그릴때 신음소리를 내시네요.. 성은쌤 기분이 묘해지네요
-
똥컨 너무인된다
-
1. 현실에 존재하지 않는것이 있다 1을 2로 바꾸면 2. 현실에 존재하지 않는것이...
-
오르비 씹년들아 3
딴년들이 질문하면 잘만 답해주면서 나는 왜 안해주는데
-
북한 지지한다고 안나올거같다던데
-
둘이서 서로를 형이라고 부르는건... 뭐임? 진짜 brother이 아니라 ~~씨 같은 건가..?
-
1. 종소리 표준 시계에 정확히 1초 단위까지 같길 2. 영어 듣기 시간에 뒷문제...
-
최저땜에 물지 3등급이 목표인데 뭘 하면 좋을까요?? 그냥 기출이랑 개념 더 공부할까요??
-
지에스커피가 그렇.게좋아여
-
ㅋㅋ
-
중학교 단어부터 외우고 오면 되겠습니까
-
금방 지나가는거 아시죠 그니깐 현역재수생기말준비하는학생들 모두 힘내세요
-
하니무섭다 5
-
ㅇㅂㄱ 0
ㅇ
-
찍맞0 실수0 2
-
미취겟네 4
-
못하나요? 온라인 주문은 너무 늦어서 ㅜㅜ
-
얼버기 ㅡ
-
어 또 이겼어 1
원정고자 꼬마가 달라졌어요
-
얼버기록 1일차 2
다들 수능 얼마 안남았는데 화이팅 하시길 11/11 (월)
-
80점대 중반 진동하는데 59점 뜸
-
오히려 마지막 주에 게임해서 긴장을 안 했음 그래서 막 수능 당일날 집에 수험표...
-
이감6-10 0
연계랑 기출 봐야돼서 시간 많이 없는데 그냥 시간 안재고 푸는 거 괜찮나요?
-
다 왔다 이제
-
9평 성적표 보고 뽕채우고 출발
-
그거 하려면 omr로 시험지를 거의 안가려야 하는거 아님? 그냥 모른척 가로로...
-
늦버기 2
끄아아 오늘두 힘내보아요
-
싹다 버려야되냐 1
독재슬슬 책 정리해야하는데 시대컨들 새책이랑 실모들 ㅈㄴ쌓여있음 당근할까???? ㅜㅜ 아깝다
-
시계 세워놓잖음 보통 근데 이거 청테이프로 고정시켜도됨? 종이로 쳐서 떨어뜨릴까봐...
-
D-3 계획 0
국어 상상 5-10 고전시가 5작품 수학 샤인미 3 킬캠 2-4 영어 마피 2-3...
-
ㅠ….며칠전까진 근자감 맥스였는데 ㅈㄴ착잡함 다들 오늘도 ㅎㅇㅌ
-
그 대신 잠이라도 야무지게 잠 가볼까
-
이시점에 4
요즘 뭐하면서 살어? 공부말고
-
ㅎㅇ 3
ㅎㅇ
-
ㅈㄴ 무거운 무언가에 짓눌려 있는 느낌 머리가 굳은거 같고 숨이 턱턱 막히는데
-
나힐순tv
-
이제는 수능 끝나고 돌아오겠습니다. 모두 원하는 대학 가길 바랍니다. 화이팅해보구요
-
오뿌이 기상 7
잘잣다
이렇게 한 번 생각해보시는 건 어떨까요??
주머니에 공 7개가 들어있는 상황을
주머니에 공이 들어있는 상자가 7개 있는 상황으로 바꾸어 생각해봅시다. 이 때 상자는 크기와 모양이 모두 같아요.
그리고 주머니에서 4개의 상자를 뽑아서 임의로 상자를 배열하겠지요?
질문자님 생각대로라면 4개의 상자를 뽑았지만 크기와 모양이 같기 때문에 임의로 배열하는 경우의수가 1가지라는말이겠지만, 사실상 그러지 않겠죠? 4개 상자를 뽑은 순서대로 왼쪽부터 차례로 놓을수도있고 뽑은 순서대로 오른쪽부터 놓았을수도 있고 한꺼번에 뽑았으면 그냥 마음가는대로 배열했을 수도 있지요. 이것이 바로 임의배열이라는겁니다. 일단 아무렇게나 배열하는거예요. 배열이 되는 전체경우의수는 그래서 4!인 24가지가 되겠지요. 물론 애초에 7개 상자 중 배열할 4개의 상자를 고르는 경우의 수는 7C4 니까 그 경우의 수까지 고려한다면 결국 7C4X 4! = 7P4 가 되겠죠?
그리고나서 이제 상자에서 공을 꺼내 열어보는겁니다. 이 때 나온숫자에는 1이 나올수도,안나올수도, 2개 나왔을 수도 있겠죠. 예를들어 나온 숫자가 1135라고 한다면 작은 숫자부터 배열된 경우의수가 얼마일까요?
첫번째 상자와 두번째 상자의 위치가 바뀌어있었어도 1135는 그대로 나왔겠죠? 즉, 전체 경우의 수 24가지 중에 1135로 배열이 되는 건 2가지가 되는 거예요. 해설에서 1a, 1b라고 둔 것은 첫번째 상자에 들어있는 1과두번째 상자에 들어있는 1을 구별지어 설명드리기 위해 네이밍 한것이구요.
수학적확률의 정의를 제대로 아는가가 출제의도인 이유는 분모에서 전체상황을 그 24가지로 설정했기 때문에 (그래야 그 24가지가 일어날 가능성이 각각 같다), 분자에서도 그 24가지 중에서 해당되는 경우를 찾아야 했기 때문입니다. 그래야 이 문제를 맞추실 수 있었을 거예요.
이해가 되셨을까요...ㅋㅋ?