신기한 수학적 대상들 (ft. 프리드버그 선형대수학)
게시글 주소: https://test.orbi.kr/00067231862
1. 다항식의 나눗셈 정리 (division algorithm for polynomials)
자연수 n과 음이 아닌 정수 m이 있다.
n차 다항식 f(x)와 m차 다항식 g(x)에 대하여
다음을 만족하는 다항식 q(x)와 r(x)가 유일하게 존재한다.
이때 r(x)의 차수는 m보다 작다.
--> 이것을 통해 수학(상) (22개정부터는 공통수학1) 에서 다루는
다항식의 나눗셈 결과가 유일함을 확인할 수 있습니다.
수능까지 도달했다가 고1 과외를 위해 복습해보신 분들은
한 번쯤 '이 결과가 유일한가'라는 질문을 스스로에게
던져보지 않으셨을까 생각해봅니다. 저는 그랬습니다.
2. 다항식의 인수분해의 유일성
차수가 자연수인 임의의 다항식 f(x)에 대하여
다음을 만족하는 유일한 상수 c, 서로 다른 유일한
기약(irreducible, 차수가 자연수이고 어떤 체의 원소를 계수로 가지며,
자연수 차수를 가지는 다항식의 곱으로 표현되지 않는 성질) 모닉(monic,
최고차항의 계수가 1인 다항식. 일차식) 다항식
, 유일한 자연수
가 존재한다.
--> 이것을 통해 마찬가지로 다항식을 인수분해한 결과가
유일함을 확인하고 넘어갈 수 있습니다.
3. 복소수에 관한 이야기
- 복소평면은 우리가 일반적으로 사용하는 직교좌표계에서와 마찬가지로
두 축으로 구성된다. x축 자리에 실수축, y축 자리에 허수축이 위치하곤 한다.
따라서 어떤 복소수의 실수부, 허수부는 각각 복소평면에 대응되는 벡터의
종점의 x좌표, y좌표가 된다.
- 복소수는 복소평면의 벡터로 생각할 수 있다.
- 복소수의 덧셈은 벡터의 덧셈에 대응한다.
- 복소수의 곱셈 결과에 해당하는 벡터는 각 벡터(복소수)가
실수축의 양의 방향과 이루는 각의 크기를 모두 더한 크기의 각을 지닌다.
- 이외에 아래의 식을 확인하라!
이때 e^(i@)는 복소평면에서 크기가 1이고
실수축의 양의 방향과 이루는 각의 크기가 @인 벡터이다.
즉, 단위벡터이다.
따라서 모든 복소수를 다음과 같이 이해할 수 있다.
--> 고등학교 1학년 교육과정 밖의 내용이 조금 섞여있지만
이를 이해함으로써 복소수에 대한 보다 넓은 시야를 갖출 수 있습니다.
4. 대수학의 기본 정리
먼저 미적분학의 기본 정리(the fundamental theorem of calculus)는 다음과 같다.
FTC1:
FTC2:
비슷한 이름인 대수학의 기본 정리(the fundamental theorem of algebra)는
다음과 같다.
복소수체 C에 대한 벡터공간 P의 다항식
--> 이를 통해 복소수 범위에서 모든 다항식은
식의 값이 0이 되도록 하는 독립변수값이 존재함을 알 수 있습니다.
보통 고등학교 수학에서는 실수 범위에서 이야기를 이어가기에
차수가 홀수인 다항식은 사잇값 정리(the intermediate value theorem)를 통해
근의 존재성을 직관적으로 확인할 수 있는 데에서 그치지만,
대수학의 기본 정리를 확인함으로써 복소수 차원에서 다항식은
항상 해를 갖는다는 사실을 보다 명확히 인식할 수 있겠습니다.
5. 체, 벡터공간, 다항식에 대하여
먼저 체의 정의는 다음과 같습니다.
그리고 벡터공간의 정의는 다음과 같습니다.
이에 따른 다항식의 정의가 다음과 같습니다.
--> 이를 통해 수학(상)에서 다항식을 공부할 때
다항식의 무엇이냐라는 정의에 대한 질문에 보다
체계적으로 답할 수 있을 것이라 생각합니다.
이전에 위키백과에서 확인한 바로는
f(x)=0의 경우 차수를 정의하지 않거나 -무한대로 정의한다고
확인했던 기억이 있는데 프리드버그 선형대수학 교재에서는
-1차로 정의하고 있네요!
p.s. 수학을 공부하다 보면 A를 설명하기 위해 B가 필요한데
B를 설명하기 위해서는 A가 필요한 그러한 상황을
맞이할 수 있다고 느꼈습니다. 물론 배움이 부족하여 그렇게
느끼는 것일테지만 이러한 상황에서 수학적 대상이라는 표현이
도움이 될 수 있다는 생각이 들었습니다.
물론 수학적 대상이라는 것도 인간이 언어를 발명하고
수학과 대상이라는 단어의 의미를 정의한 후에
비로소 의미를 지니게 된 표현이겠지만...
인간은 내가 직접 감각하는 것들 외에는
어떠한 개념의 유래, 발생 과정 등에 대해
확신을 갖지 못할 때가 있지 않습니까?
어느 정도는 이해하지 못했다는 느낌을 안고 넘어가는 것도
학습을 이어가는 데에 도움이 될 수 있지 않을까 하는 생각을 해봅니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
로늘의공부 1
국어 문학 3지문 수학 해모 4-1,4-2,서바28회,수학n제풀다잘꺼임 영어...
-
ㅈㄴ 터짐 ㅋㅌㅅㅌㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ에효
-
논술문제 다시보니까 못해먹겠네 이거뭐냐
-
ㄱㄴ?
-
실모 답지 보는거 너무 불편해서 스캔해서 아이패드로 보고싶은데 뭐로해여하나요 ㅠㅠ
-
세속 공간 균질 종교적 공간 비균질 인간은 2개 다 경험한다
-
이번에 내년까지 되는 메가패스로 첨샀고 내신범위가 고전시가인데 저희 학교 시험이...
-
야식 추천 6
받음
-
고소마려울려나
-
배 터질라함 피자 오기 전에 미리 커피 마시고 있긴했는데
-
80점 해모보단 잘풀리는느낌 14 15 20 22 28틀
-
부정적분 질문 6
어디가 잘못된건지 모르겠어용
-
수능에서 쌍사 1
주니어 하드~익스트림, 시니어 급 문제 나올 확률 있나요
-
이상하게 듣기 1~2개씩 나가리라 84~88 요동치는데 나만 그럼...? 듣기...
-
11덮 물2화2 3
50 47(시간 부족) 화2는 충분히 시간 내에 다 풀 수 있었을거같은데 요즘 좀...
-
그럴땐 프로미스나인 beat the heat을 들어보세요 흐흐
-
11덮 국어 0
화작 78이면 실제 4초 보정 3후 정도 될까요..?
-
수학실모 이제 지긋지긋해서 수능날까지 딱 8회분만 더할생각인데 3
뭐하면 좋을까 강k 강x 서바 더프 킬캠 양승진 빡빡이 장영진 지인선시리즈 설맞이 빼고 추천좀
-
강사들이 공개하는거
-
등급컷 오마 하거늘 져녁밥을 일찍 시켜 먹고교문 나서 방문 들가 이수로 가액하고...
-
과기지문을 더 틀림 ㅅㅂ
-
와 사문 뭐야 1
6,9 모의 안치고 적중예감만 풀었더니 이젠 6.9모가 사설같노ㅋㅋ 그리고...
-
시간안에 아예 못풀게내는거같은데 더프든 서바든 지랄이든 나만 그리느낌?
-
올해 사회 3
대동법 <<< 가능성 얼마로 봄? 경제 쿨이긴 한데 대놓고 경제로 낼 순 없으니...
-
공룡이 바다에 빠져죽으면 해성층에서 발견될수도 있는거아님? 2
ㄹㅇ궁금한데
-
재수인데 1년내내 아침 먹은날이 손에꼽는디 걍 평소대로 안먹어도 되겟죠…?
-
어려우면 저 좆돼요 제발
-
수학 실모 0
강x가 그렇게좋나요??? 지금 이해원시즌1풀고있는데… 그냥풀던거푸는게맞겠죠?팔랑귀라…
-
내인생의낙
-
크악 수능 이색기가 크악 시험 주제에 우우 수능 이 미친 야발놈이 ㄸㄸ이를...
-
07인데 이거 내년에 2026버전 언제 나올까요?? 그럼 내용 달라지나요 메가패스...
-
인문에 회이트헤드 / 사르트르 / 킨트 / 데카르트 과기에 유체 / 풍력발전기 /...
-
잠 깨는거 일어나는 거 책펴는 거 연필쥐는 거 의자에 앉는 거 샤프심빼는 거 지우개...
-
점수가 80 플마인 게 가장 큰 스트레스
-
현재 24학번 지사의 재학중이고 현실적으로 제일 잘 가면 25 경북의 입학할 수...
-
아수라 강의수강 불찍파 11-1,2,3 + 복습 사문 개념책 회독 적중예감 8회...
-
고개를 들어 ebs 표지를 보게하라
-
해리스냐 트럼프냐…한국시간 오후 2시부터 25시간 투표[2024美대선] 4
[워싱턴=뉴시스] 이윤희 특파원 = 향후 전세계에 영향을 미칠 미국 차기 대통령이...
-
온라인응시에 쓰는거 하나 잘못넣음..
-
자랑스러운 우리 한글과 세계최고수준의 금속인쇄술이 없었다면 우리나라의 유구한역사와...
-
야식은 참고
-
휴릅 해야지 6
1억 덕 못 모을 거 같은데
-
884884보단 낳지않나..
-
미국 운명 걸린 대선 본투표 개막...'승리 예측 0.03%p 차이' 1
[앵커] 전 세계 이목이 쏠리는 미국 대선 본 투표가 미 동부에서 시작됐습니다....
-
영어 성적올라서 감사하다 어쩌구 디엠보냈었는데 답장해주심 ㅠㅠㅠㅠㅠ 증말루 영어 1등급 받을거야
-
오르비할려고짜증나서카톡지움
-
그런 걸 어떻게 일일이 다 재요..
-
성별 논란 ‘올림픽 金’ 알제리 女 복서, 진짜 남자 맞았다 2
‘2024 파리올림픽’ 복싱 여자 66㎏급에서 ‘성별 논란’ 속에 금메달을 차지한...
-
오 형은 0
O형은 딴 혈액형한테 다 피 줄 수 있나?
고딩때 벡터 배울 때 벡터의 연산을 합이랑 스칼라곱을 배우는데
이걸 일반화시켜서 합이랑 스칼라곱이 잘 작동하는 공간의 원소를 벡터
내적도 뒤에 보면 똑같이 일반화함
n-tuple에 대해 같은 순서에 해당하는 원소끼리 곱하여 모두 더한다 <-- n차원 벡터공간에서의 내적의 정의
field를 선대에서도 언급하고 가나요? 선대본지 오래돼서 가물가물
강의는 아직 들어보지 못해 잘 모르겠습니다, 본문에 활용한 교재의 경우 첫 단원에서 벡터 공간을 정의할 때 체를 언급하고 맨 뒷 부분 부록에 소개해두었더라고요!
잘 기억은 안나는데 프리드버그가 확실히 수학과에서 쓰기 좋다던데 세밀하네요... 선대군엔 있었던거같기도? 없었던거같기도. 제가 배울때 썼던 strang에는 없었던거같음.
먼 나라 이웃 나라