수2 자작문제
게시글 주소: https://test.orbi.kr/00068316741
마지막에서 함수 좁히기 실패.. 어떤가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
승무원학원 그런거 안다녀도 성적 개높으면 붙여줌?
-
국어 93 수학 100 영어 91 물리 44 화학 44
-
진짜 개춥네 1
ㄷㄷㄷㄷ
-
지금이라도 전부 다 보는게 그래도 좋을까요? 운문 위주로 집중적으로 볼까요
-
뭐로 주지 쪼꼬 줄까 싶은데
-
전역하고전역콘열어죠
-
오랜만에과잠입고 1
등교하기 외투를 다른친구가 챙겨가서 없다고 하네요...
-
진짜 못다녀서 다닌다고 말을 못함요...
-
김종익 잘노기 들었구 파이널 모고 풀다가 너무 어려워서 유기했습니다... 홉로루...
-
페레로N 4
너도N수야?
-
내성 생겨서 효과 없다 말고 역으로 작용하는 것도 가능한거임?
-
나도 오빠좋아함 11
나는 정상이라고생각해요. . 집에 동거도하고 밥도먹고 잠도 같이 잠 ㅇㅋ? 군대도...
-
왤케 덥지
-
풀로 달리니까 아치멩 못 일어나겠네 오늘도 늦잠자버렸어
-
내가 본 사설 중 가장 답이 깔금하게 떨어지도록 설계된 거 같음
-
추워 2
-
학원 가기싫다 6
...
-
나님 기상 0
안녕 세상아!!!!!!
-
이거만 오르비에 3번째 올리는데 자꾸 정신병이라 그러는데 좋아할수도 있는거 아님?...
-
이익사회 공동사회 뭐 이런 거 나오고 갯수 세는거 약한데 어떤거 해야하는지 추천해주세요!
-
강x 시즌1~3 푼거 12회분 점수 쭉 점수 보니 확실히 알겠음 아쉽지만 인정하고...
-
수학 9모 88이었고 10모 80인데 (각 실수 1개) 예전엔 계속 76...
-
"킬캠 10쩜" 뭔데 킹받게
-
배변 패턴 정상화됐다 10
이젠 7시20분 딱 되면 똥마려워짐 ㅋㅋㅋㅋ 국어시간에 일어날 수 있는 변수는 거의 다 차단했다
-
좋은 하루 되세요!
-
진지하게 23수능 준비할때보다 독서가 빡빡한거같은데 뭘 어케해야되지 원래 경제 법...
-
쥰내 춥네 4
수능한파라는게 있긴 있군아
-
지금 의욕도 잃고 뭘해야할지도 모르겠고 배모 오지모는 왜자꾸 2,30점대에서...
-
저게뭔데 ㅋㅋㅋ
-
2배속으로라도 강e분 들을까요? 혼자 정리하려 했는데 분량이 너무 많아서..
-
오늘도 파이팅. 몸관리 잘하자.
-
다들 차렷. 1
학원으로 갓! 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘
-
얼리버드 기상. 5
-
조이는 보이가!
-
얼버기 4
D-8
-
킬캠 10점이 뭔데 씹덕아
-
이감 중요도 c 0
C에도 없는 작품은 안봐도 되겠지..?? 중요도에 아예없는작품 나온적 있나
-
얼버기 3
D-8 화이팅!!!!
-
늦버잠 2
어차피 내일 오후 수업이라 괜차늠 ㅋㅋ
-
진짜 고능하네.....
-
시험지 꺼내거나 파본검사할 때 눈풀하면 부정행위인가요
-
현실적으로 1
화미생지 기준으로 96 96 2 89 89 면 어디 적정라인임? 이과기준으로
-
30만원 그대로 깨지겠네 제발 내일 학교에서 나의찾기 신호 떠라
-
탐이나요
-
1. 아잉은 무조건 중급이나 고급으로 들어라. 초급반에 간다는 것은 고려대생으로써의...
-
그 때가 재밌었는데.. 오랜만에 우연히 차영진t 해설강의 듣는데 다시 공부하고...
-
보통 그냥 감이죠?
-
ㅅㅂ ..
-
아 슈발 에어팟 2
잃어버렸네 ㅈ같다 진짜
-
크크루삥뽕
묘하네요
오..어떤 점이요?
12?
정답!
f(x) n차, 최고차항 계수 a
(n은 자연수, a는 0이 아닌 정수)
조건 (가) ↓
f(x^k) : nk차, 최고차항 계수 a
f(x)^k : nk차, 최고차항 계수 a^k
x^k f(x) : n+k차, 최고차항 계수 a
f(k - 1) = 1 / a^k (nk > n + k)
f(k - 1) = 0 (nk = n + k)
f(k - 1) = (발산) (nk < n + k)
조건 (나) ↓
1 - f(x)/x ≤ 0
f(x) ≤ x (x ≤ 0)
f(x) = x (x = 0)
f(x) ≥ x (x ≥ 0)
lim(x→∞) xf'(x)/f(x) = n (f(x)의 차수)
i) nk = n + k
f(k - 1) = 0, k = 1
n ≠ n + 1 이므로 X
ii) nk > n + k
n(k - 1) > k, n > k/(k - 1) > 1이고
(나)에 의해 n은 3 이상의 홀수, a는 양수
f(k - 1) = 1 / a^k ≥ k - 1
---> k = 2, a = 1
f(1) = 1이므로 f'(1) = 1
i), ii)에 의해 m₁ = 3,
f(x) = x(x - 1)² + x
m₂ = f(2) = 4
∴ m₁ × m₂ = 12