근의 분리 상위호환
게시글 주소: https://test.orbi.kr/00068358303
과외준비를 하다가 이번 6모 15번과 작년 9모 13에가 어떤 관점이 동일하게 쓰인다는 것을 알았는데요,
특히 9모 13번을 이렇게 푸는 것은 처음 봤다고 하네요.
앞으로 근의분리는 쓰지 마세요. 오늘 알려드리는 이 방식이 근의 분리를 거의 완전히 대체할 수 있습니다
(글 맨 마지막에 조건 달아뒀습니다.)
사실 저는 그렇게 특이한 접근인지는 모르겠습니다. 수학(상)을 열심히 공부했다면 이게 가장 자연스러운 접근이죠. 아무튼 과외생을 보며 이걸 여러분께도 소개해드리면 나름 의미가 있겠다고 판단되어 글로 쓰게 되었습니다.
일단 이번 6모(2025학년도)입니다. 문제를 다 풀진 않을거고, 맨 마지막 부분만 볼게요. (나) 조건을 통해 k=2인 것까지 구한 상황입니다.
k=2니까 g(x)가 미분가능하려면 f(2)=2, f'(2)=2여야 합니다. 최고차항 계수가 1인것도 아니까, 문자 하나만 가지고 식을 세울 수 있습니다.
이렇게 말이죠.
(가) 조건에 의하면, 얘가 x가 2보다 큰 곳에서 항상 증가해야 합니다. 그럼 당연히 도함수 관찰을 해야겠죠.
아, 센스 있게 2만큼 왼쪽으로 평행이동해서 봐도 되는데(저도 풀 때 그렇게 했구요) 헷갈리는 독자도 있을 수 있기에 여기선 그대로 갈게요. 괜히 과정 추가하지 않겠습니다.
아무튼 미분해보겠습니다.
냅다 판별식 쓰면 안 된다는 것은 알고 계실겁니다.
함수가 x축과 두 번 만나지만 x가 2보다 클 때는 x축보다 위에 있을수도 있으니까요.
난 그냥 그렇게 해서 맞았는데? 하시는 분들은 운이 좋으신 겁니다. 이 문제에선 결국 그게 답이긴 하더라구요 ㅋㅋ
여기서 a 범위를 나눠서 푸는 분들도 있습니다.
그건 올바른 풀이지만, 완전히 상위호환인 다른 풀이가 있어요. 그걸 지금 알려드리겠습니다.
일단 부등식에서 모르는 문자가 있는 부분을 넘겨버립니다. 그 뒤에 기하적인 의미를 부여할겁니다.
왼쪽은 완벽하게 그릴 수 있는 이차함수고, 오른쪽은 (2,0)을 지나면서 a에 따라 기울기가 달라지는 직선이죠.
이때 “직선이 항상 이차함수보다 아래에 있어야 한다” 라고 해석해주시면 됩니다.
그럼 기울기가 점점 가파라지다가 딱 접하는 순간까지 가능하겠죠? 그때보다 기울기가 더 커지면 직선이 더 위에 있는 순간이 생깁니다.
반면 기울기가 음수라면 음의 무한대까지 계속 가능할 겁니다.
x가 2보다 큰 곳에서는 여전히 아래에 있기 때문이죠.
그럼 접하는 순간 계산해볼게요.
a는 플마 루트 6인데, 둘 중에서 우리가 원하는 순간은 -루트 6일겁니다. 그래야 빨간 직선의 기울기가 양수가 되기 때문이죠.
a의 범위는 -루트6보다 크다가 되겠네요.
2024년 9평 13번에도 이걸 적용해볼게요.
저도 이렇게 빨리 풀릴 줄 몰랐는데, 아주 빨리 풀 수 있습니다.
얘도 당연히 도함수를 관찰해야겠죠.
연두색 영역에 도함수가 그려져야 합니다. 파란색 함수처럼요.
반드시 (-1,0)을 지나야 하겠네요.
왼쪽 함수에 대입해봅니다.
b=2a-1이 나오겠네요.
도함수의 오른쪽부터 관찰해보겠습니다. 아까 했던 거 똑같이 할게요.
a범위 구했습니다.
왼쪽에서 새로 추가되는 조건은 없습니다. 이미 이 조건만으로도 왼쪽 구간 함수는
y절편이 양수고
(-1,0)을 지나므로
아까 말한 연두 구간에 그려집니다.
우리가 구해야 하는건 a+b의 최대최소 즉, 3a-1 의 최대최소값입니다. a 범위를 아니까 다 구한 셈이네요.
네 여기까지입니다.
부등식으로 인식한 뒤에 약간의 변형을 가해주어서 기하적으로 관찰하는 방법을 알려드렸습니다.
문자범위 나눠서 하는 것보다 훨씬 빠르고 실수 확률이 적은 풀이라 생각합니다.
한 마디 덧붙이자면, a로 묶인 부분이 기하적으로 깔끔하게 해석이 가능할 때 이 방식을 쓸 수 있습니다.
그럼 언제 깔끔한 해석이 불가할까요?
a의 계수가 이차도 있고.. 일차도 있고 이런 식으로 여러 개가 있다면 기하적 의미를 부여하기 힘들 겁니다.
즉 문자 계수가 하나로 한정된 상황에서는
이 방식이 근의 분리를 완전히 대체한다고 말할 수 있겠네요.
다음에 또 좋은 글로 찾아뵙겠습니다. 감사합니다.
0 XDK (+1,010)
-
1,000
-
10
-
이 그래프가 서로 다른 네 실근이 맞나요..? 가운데 두 개는 중근 아닌지.. ㅜㅜ 혼업스럽 ㅠ
-
이시기 마인드 1
어떻게 잡는게 가장 좋다고 생각하시나요?? 무조건 잘볼거다라고 생각하는게 맞나요?
-
11투스 언매 1
1컷 어느정도일까요 쉬웟던거같은데
-
무슨일을 하든간에 메타인지, 핵심을 꿰뚫는 통찰력이 0
제일 중요하지않나 싶어요
-
내 인생의 직감이 말해주는준
-
박광일 인강 1
박광일이 현강한다고 한 곳인 대치 엘브라운에 전화문의 했는데 거기선 인강 안한다고 함.
-
음.. 역시 망했군
-
11/14 대학수학능력시험 성적통지표 일단 나부터 국어 2(91~92) 수학...
-
수학 0
9일 남은 시점에서 하루 2실모+오답 vs 하루 1실모 오답 + n제 벅벅 뭐가 더 나을까요??
-
11투스 해설 2
안 올라오나여? 제가 못 찾는 건가요 ㅠㅠ
-
사설하나틀릴때마다진짜죽고싶음시발44점이3컷이라니
-
친구한테말하니까 이상하고함 ㅇㅇ. 보통이런고민하지않나 뭐가가치있는건가 하는질문
-
국어 남은기간동안 22수능 23수능 24수능 올해 6모 이렇게 4개 시간재고...
-
저는 1. 하이브 시리즈 2. 비질란테 3. 후레자식 4. 더복서 5. 세상은돈과권력
-
사탐 벼락치기 0
5일동안 쌍윤 벼락치기 가능하겟죠…ㅋㅋㅋㅋㅋ 9모 1,1인데 좀 유기하니까 끝날끝도 엄청틀리네…
-
ㄹㅇ 담임쌤이 한장 쓰라고 했는데 객기 부리다가 대학 못가서 재수중인데 올해는...
-
이시점에 이마다 사야하나 패스없는데
-
누워있는데 보보봇치님 생각이,, 항상 사랑해요,,,
-
ㄹㅇ
-
근데 다니기ㅛ싫어 진짜 싫어 거기 4년다닐바에 고졸할래 근데 텔그에 정시 성적...
-
정말 색깔이 안맞는데
-
내가만든 쿠키~ 2
너를 위해 구웠지
-
님들1나와요?...난 안나오는데 ....6월도 90점나왔는데 1이 안뜸 듣기도 자꾸...
-
시대, 강철중 제외하고 뭐 있나요?
-
주문받으시면서 스몰토크 하다가 저한테 나이 물어보시길래 03년생이라구 대답했더니...
-
ㄹㅇ
-
홀수제발 0
작년에 짝수했잖아...
-
군수생 달린다 10
힘들다
-
맨날 초코쉐이크만 먹다가 메인글 보고 시도해봄
-
1번~10번 16~17번까지는 풀수 있는데 11~15번은 진짜 틀릴때가 너무 많아요...
-
생각하다가 정신 차려보면 졸고 있었단 사실을 깨닫게 되고....
-
각각 뭐가 강점임?
-
웰케 춥냐ㅡㅡ 8
ㅡ ㅡ ㅡㅡ ㅡㅡㅡ ㅡㅡㅡ ㅡ
-
연애를해보고싶구나 59
착하고 커다란 마음씨 지닌 미소녀 없는가
-
시즌3 3회?... 41점 나왔는데 ㄱㅊ게 본건가 9월에 지구 4뜨고 열심히핶는데...
-
이거 풀이 왜 틀린건가요?
-
예비 고1이 준비해야 할 것들(ft. 고등과정 선행 학습) 0
안녕하세요 나무아카데미입니다. 이전에는 예비 고1을 위한 고등학교 선택 방법에...
-
생명 이비에스 파이널이랑 수완 연계 영향 크나요? 꼭 풀어봐야할 정도인가욥..??
-
맞팔구해봐요 16
다들 해주시나요,,?
-
질문받아요 17
22, 23 미적 100이고 서울대학교에서 공학(전기정보 or 컴퓨터)과...
-
정법 적생모 10회 10
문제가 좀 엥스럽네
-
나 이제 옯창 다된거임?
-
이번생엔 어렵나
-
반수로 논술+정시를 선택하게 된 현역입니다 (안정써서 납치당함) 인문논술을 노리고...
-
좀 에바인데 5개밖에안남음
-
요즘에 가끔 30점대 떠서 불안했는데… 파이널 1회인데 많이 어렵진 않은거같아서...
-
어카지 남은기간 한국사만 해야하나
-
공부하기 싫어서 13
학습지 잘라다가 접은 학
-
현우진 와이프 5
어그로 죄송.. 지금 포기하고 수능날까지 진짜 기본적인 것들.. 예를 들면,...
개추 눌렀다....
캬
일단 읽어보고 걔추
앞으로도 좋은 글 써볼게요 ㅎㅎ
ㄷㄷㄷ
갑종님이랑 생각이 거의 일치하는...
왜냐면 둘이 친구거등
저도 작년 9평 13번을 이렇게 푸는게 맞다고 생각했어서 근의 분리니 뭐니 말 많을때 잘 이해가 안되긴 했었어요
김현우 선생님이랑 완전히 똑같이 푸셨네요.. 칼럼 잘보고 갑니다!
15번 이거풀때 산술기하로 풀었는데 최솟값이라 풀린거겠죠
6평 말하시는거죠?
산술기하도 괜찮네요. 왜냐면 여러가지 조건이 딱 맞아 떨어져서 여기에 산술기하를 쓸 수 있습니다.
일단 x가 2보다 큰 부분을 봐야 하는데, 그게 x-2>0이어야 하는 산술기하 조건이랑 맞아떨어졌구요,
부등식에서 오른쪽 부분이 상수이기 때문에 최솟값만 보면 됩니다.
물론 좀 더 근본적으로는, 산술기하는 완전제곱식에서 나온 공식이기에 똑같다고 볼 수도 있지만
아무튼 아주 맘에드는 관점이네요!!
넹 6모 15번 x-2>0보다 큰상태여서 이거로 산술기하썼는데
해설강의같은거 보니까 다들 다르게풀어가지고 결국 똑같은이야기였네요
대범준 그래프 분리
첫 문제에서 a=±루트6 구하셨을 때 D/4 공식을 쓰셔는데, 미지수를 (x-2)로 해서 b'²-ac 로 바로 구하신건가요?
아! 근데 그렇게 해도 되는건가요? 제가 고1수학을 날림으로 배워서..
넵, 이해를 도울 수 있는 두 가지 관점을 소개해드리겠습니다
1. 평행이동.
x축과 만나지 않는 이차함수를 좌우로 평행이동해도 여전히 x축과 만나지 않는다. 따라서 해당 이차함수를 2만큼 왼쪽으로 이동시킨다면 3x제곱 +2ax+2이고, 여기에 판별식을 쓰면 된다.
2. 치환
x-2를 t라는 새로운 문자로 잡는다.
사실 1과 본질적으로 같다.
감사합니다!! 저는 x가 변수인 상황에서 판별식을 쓰는데, 2만큼 평행이동을 해도 똑같이 성립이 되는지 궁금했었는데 이해가 되네요! 정말 감사합니다 ㅎㅎ 덕분에 수준높은 풀이법 하나 배워갑니다 . 감사합니다!!
저도 굳이 근의 분리까지 안끌고가고 싶어서
저는 그냥 잘 모르겠으면 화끈하게 근의공식 때리고, 두 근이 모두 k보다 작아야한다면
D >=0인 경우, 그냥 더 큰 근이 k보다 작다! 라고 하게끔 가르쳤는데
기하학적인 풀이도 너무 좋은 듯 합니다 ㅎ
잘 보고 갑니다!
관찰중인 문자의 차수가 여러개가 아닌 이상 (예를 들면 식에 a도 있고 a제곱도 있는 경우), 위 기하적인 풀이가 근의 분리를 완전히 대체합니다
.
의견 공유 감사해요 ㅎㅎ
고정된 요소가 필요하다는 말씀 맞으실까요? 좋은 댓글 감사합니다 ㅎㅎ
오 이거 좋네요. 시간 단축 꿀일 듯.
+ 이번 6평 14번 부등식도, 부등식 여러개로 케이스 분류해서 끼워 맞추지 않고, 일차함수랑 이차함수 만나는 걸로 구할 수 있음!
정말감사합니다
오늘도 배워갑니다 감사합니다
많은 상황에서 상위 호환은 맞지만 계수의 꼴에 따라선 대체가 안 되는 경우도 있습니다!
(고정점 지나는 직선으로 해석이 안 되는 경우도 있음)
저도 위에 댓글에 달아놨는데, 그 경우에는 기하적 의미를 깔끔하게 부여할 수 없습니다
본문에도 추가해야겠네요
질질 쌌다.
미분을 활용하여 직선의 회전 이동을 관찰한다, 감사히 잘 읽었습니다!
좋은 글 감사합니다
선생님 진짜 미틴넘이시네요 미친초고수다