오랜만입니다 (자작문항)
게시글 주소: https://test.orbi.kr/00068802686
공통 12번 정도?의 난이도 되는 것 같습니다. 사관학교 문제가 재밌어서 그런 방향으로 만들어봤는데 괜찮은지는 모르겠네요. 많이 풀어주시면 감사하겠습니다. 피드백도 많이 부탁드립니다.
모든 문만러분들 화이팅입니다!
(+) lg(x+k)l=lf(lxl+k)l 로 풀어주세요. 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기숙재수 중인데 저희 학원 애들은 다 전홍철 듣더군요...막장구원이나 스피드리딩...
-
수능특강을 인강보면서 같이 공부하고 싶은데 ebs인강으로는 어떤썜이 좋죠?? 이명학??전홍철??
-
스카이에듀 Jay 전홍철 선생님 후기(작년 ETOOS) 3
2학년때 까지는 영어 80점을 넘어 본적이 없었고.. 항상 영어가 발목을 잡는...
-
지금 해보려고 하는데 효과있을까요? 작년에 들어보신분들 강의 어떤가요/
-
작년수능 외국어 5등급 받았습니다지금 영단기( 문단기 스텝1 ) 와 이명학T 신택스...
16?
조건(나) 까먹어서 잠깐 헤맸...
저 조건 없으면 f(x) 개수가 한없이 많죠
혹시 함수가 (x+3)(x-3)^2/27 인가요
(x+3)은 아닙니다 ㅠ
(가) 조건에 의하면 단지 평행이동만으로 미분이 불가능했다가 가능하도록 만들 수 있다는 건데 이해가 안돼요 ..
g(x)를 x의 범위에 따라서 정의해보시면 쉽게 이해 가능하실 겁니다 :)
모르겠네요.. 설명부탁드려도 될까요
f‘(0)의 좌미분계수와 우미분계수가 같아야합니다.
즉, f’(0)=-f’(0)이므로 f’(0)=0입니다. 이것이 x축 방향으로 1만큼 평행이동한 것과 x축 방향으로 -3만큼 평행이동 한 것에서만 성립한다 하였으므로 f’(-1)=f’(3)=0입니다.
저도 풀어봤는데 오류 같습니다. g(x+k) 가 f(|x|)를 x좌표로 평행이동한 꼴인데, 이게 미분가능하려면 x=0에서가 아니라 x=-k 에서 미분계수가 0이어야 해요.
Wogud님이 푸신 건 정답이 맞습니다 제가 인수분해 되어있는 줄 몰랐네요 풀이 과정 의도는 그게 맞는데 오류인가요?
아마 의도하신 정답이 나오려면 g(x+k) = f(|x+k|) 가 아니라 g(x+k) = f(|x|+k) 가 되어야 할 것 같습니다