엄밀한 수학(1): 구간 별로 정의된 함수의 미분 가능성
게시글 주소: https://test.orbi.kr/00068865526
얼마나 오래 갈 지는 모르겠지만, 고등 수학에서 빈번하게 다뤄지는 몇 가지 주제에 대하여 조금 엄밀하게 다뤄보는 글을 쓰려고 합니다. (주제 추천 받아요.)
엄밀한 수학이지만, 수학을 전공하지 않은 고등학생 정도의 수학 지식을 갖고 있는 분들도 최대한 이해할 수 있도록 써 보려고 합니다.
첫 번째 주제는 [구간 별로 정의된 함수의 미분 가능성] 입니다.
[2021학년도 9월 모의 평가 10(나)]
위 문제와 같이 구간 별로 정의된 함수의 미분 가능성을 묻는 경우, 미분 가능성의 정의보다는 대부분 다음 두 가지 식의 연립으로 해결합니다.
(i)은 [미분 가능하면 연속이다.]의 성질을 이용하여 각각의 식에 1을 대입하여 같다고 놓고 구합니다.
(ii)는 각각의 식을 미분하고 1을 대입하여 같다고 놓고 구합니다.
(i)은 자명합니다. 문제가 되는 부분은 (ii)의 논리입니다. (ii)는 "도함수는 x=1에서 극한값이 존재한다."는 것을 의미합니다. 이를 엄밀하게 규명하기 위해 몇 가지 명제를 떠올려봅시다.
명제1: "미분 가능하면 도함수가 연속이다."
수학을 조금 깊게 공부해 본 성실한 고등학생이라면 위 명제1이 거짓임을 알고 있을 것이고, 또 그 중 대다수는 그의 반례도 알고 계시리라 생각합니다. (단, 그 역은 성립하죠.)
그렇다면 결론부의 조건을 조금 더 약화시켜 생각해봅시다.
명제2: "미분 가능하면 도함수의 극한값이 존재한다."
명제2 역시도 명제1의 반례로 어렵지 않게 거짓임을 보일 수 있습니다.
그럼, (ii)의 등호가 성립함을 보장해주는 근거가 되는 명제는 무엇일까요? 우리는 미분 가능한 함수에 대하여 그의 도함수의 극한값이 존재한다는 것은 알 수 없지만, 최소한 문제 조건으로부터 도함수의 좌극한과 우극한이 각각 존재한다는 것을 알 수 있습니다. 즉, 다음 명제를 생각해볼 수 있겠습니다.
명제3: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수의 극한값은 존재한다."
위 명제3이 참이라면, 우리의 최종 목적인 (ii)의 논리적 근거를 마련할 수 있습니다. 위 명제3의 참을 설명해주는 것이 바로 다르부 정리(Darboux's Theorem)입니다.
고등학생이 이해할 수 있는 언어를 기반으로 다르부 정리의 내용을 살펴봅시다. (증명은 "Introduction to Real Analysis by Robert G. Bartle"을 참고했습니다.)
다르부 정리 (Darboux's Theorem)
: 함수 f가 닫힌 구간 [a, b]에서 미분 가능하고 k가 f'(a)와 f'(b) 사이에 있을 때,
f'(c)=k를 만족시키는 c가 열린 구간 (a, b)에 존재한다.
즉, 미분 가능한 함수의 도함수는 사잇값 정리의 결론을 만족시킵니다.
[증명]
미분 가능한 함수 g를 다음과 같이 정의합시다.
g가 연속이므로 최대-최소 정리에 의해 닫힌 구간 [a, b]에서 최댓값을 가집니다.
이므로
g는 x=a에서 최댓값을 갖지 못합니다. 이와 비슷하게, x=b에서도 최댓값을 갖지 못합니다.
즉, 닫힌 구간 [a, b]의 경계에서는 최댓값을 갖지 못하므로 최대가 되는 지점을 x=c라 할 때, c는 열린 구간 (a, b)에 존재합니다. 따라서 다음이 성립합니다.
Q.E.D
다시 우리의 원래 목적으로 돌아가서, 위 다르부 정리에 의해 미분 가능한 함수의 도함수가 좌극한과 우극한이 각각 존재한다면 반드시 그 두 값이 같아야 합니다. 그리고 더 나아가 그 지점에서 도함수는 반드시 연속이어야 합니다. 이 명제3을 다르부 정리에 의해 더 강한 조건으로 바꿔 다음 명제4가 참임을 알 수 있습니다.
명제4: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수는 그 지점에서 연속이다."
처음의 문제에서 f'(x)의 x=1에서 좌극한과 우극한이 각각 존재하므로 위 명제4에 의해서 f'(x) x=1에서 연속입니다. 따라서 (ii)의 등호가 성립합니다!
제 글이 그닥 많은 사람들이 읽지는 않지만 ㅎㅎ;; 개인적으로 정리해보고 싶었던 주제였습니다. 조금이나마 도움이 되셨으면 좋겠습니다. 감사합니다:)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
등급컷 0
님들 물리 1컷 46될 가능성은 없나여? 지구 2컷 38될 가능성도...
-
롤 정신병 걸릴것같아.... 탑레 다이아, 현재 에메-플레 지옥에 빠짐 오버워치...
-
언매 vs 화작 0
재수 준비하고 있는데 언매 할지 화작 할지 고민중입니다 이번 수능에서 화작 15분...
-
치타는 울다가 웃어서 엉덩이에 털났다.
-
반갑습니다. 18
-
사실상 오지 말라죠? 최고점-최저점 20점 이상이냐 이하냐에 따라 다르지만
-
지금 6등급이구. . . 일단새벽 6시-7시 20분까지 모의고사연습 9시까지...
-
3월 말부터 공부하면요 ㅠ
-
정상화좀
-
일단 3월부터 수능날까지 매일 3-4시간 투자할거고 3월말부터개념,기출 들이박고...
-
33257수의대 1
과탐은 올해하다가 놧는데 재수하면 수의대 갈 수 잇을까요 과탐은 생지로 바꾸려합니다
-
님들 나 어때? 1
나 진심 문제 있는걸까. . 너무 불안해
-
생지랑 정도 많이들었고, 쏟은 시간이 아까워서 사탐런을 하기 망설여집니다 우선...
-
ㄹㅇ 중간에 정병왔을거같음 국어 5월중순인가에 풀려서 경기도에서 버스타고 갔는데...
-
가채점 지금 진학사나 메가에서 점수 주는 거 확통틀이면 표점 우세한 거 반영되어있나요?
-
생각보다 꽤 많은 동아리가 나이 많으면 컷합니다 지금 기준 9n부터는 신입컷하더라구요
-
학교 다니면서 느낌 진짜 있음 그냥 나랑 다른거라 부럽다거나 그런 느낌도 안듦걍...
-
고1이고 스카다니고있는데 중학생들 시험기간되면 너무 시끄럽고 사람이 많아서 집가까운...
-
고인물임
-
언매 91 미적 공통-2 미적-1 틀림 88 영어 4등급 생명 45 지구42...
-
31411 정시 문과라인 어디까지일까요? 정시는 처음입니다 2
국어 78 언매 수학 88 미적 영어4 정법 47 사문47 입니다 문과라인 어디까지...
-
연세대 이 트래쉬 잡대 대체 가스라이팅을 어캐했길래 애들이 계속 연대한다 연대한다...
-
오랜만에 메가나 들어가볼까 해서 갔는데 2타시네요..? ㄷㄷ 양승진t가 4타 되시고..
-
고교 출결때문에 암만 높여봐도 97점이네... 5월 입대 노리고있는데 이거...
-
학고반수 실패에 관해 질문 답변.. 제발 부탁드립니다.. 2
1학년 1학기 아예 학교 안다니고, 2학기는 휴학했습니다. 학사경고장은 받았습니다....
-
탐구 고민 0
과탐 1 2 각각 뭐 해야하죠? 물1 지2?
-
올해같은 입시에서 서울대 의치대는 cc면 힘든가요? 0
어떻지 모름
-
감점폭도 크고 비교내신도 안 주는 이유는 메디컬 때문같음 그리고 수시 출신이나 내신...
-
예체능이라 수학 빼고 저 성적 나왔습니다 .. 재수때 나름 거의 아침부터 열심히...
-
으아아아ㅏ아ㅏ 잘래
-
생1은 개념형 다풀고 근수축 막전위 푼후 4문제 찍어서 하나 맞추면 개날먹으로...
-
어지간하면 bb아님 cc 둘 중에서 준다던데 cc는 얼마나 까이는 거임...
-
반드시 ㄱㄱ헛
-
이거 채용조건형임??? sk나 삼전??
-
그냥 얼굴 때문이 아니라 돈버는게 얼마나 ㅈ같고 고된건지 알면 알수록 짜증이남
-
논술 질문 0
제가 a에서 선분 cd에 내린 수선과 cd가 만나는점을 h라하자를 a에서 선분...
-
형 잔다. 2
오르비 취침소등하겠습니다. 편안한 밤 되십시오!
-
하.......예전에는 하루에 2쿨도 봤는데
-
cc라면?
-
본인들은 의대 가서 전문의 따는게 가성비가 어떻다 생각함? 그니까 의대 가기 위한...
-
평소에 잘 하다가 재수 수능 딱 한 번 망치니까 진짜 살기 싫음
-
낮과 추추합은 노려볼만하겠죠?
-
보다보다 어지러워서 잘거임뇨..
-
하. . . 사탐런할거면 얘로 가야할까요?
-
재수 시작하기 전까지 알바 투잡 존나 하셈 그리고 햇살론대출로 몇백 대출 땡기고...
-
1학년때부터 지금까지 제대로 국어 공부라는걸 해 본적이 없음.. 독서 기출만...
-
하. . . 지금 과탐 가산점도안주고 문은 다 열렸고 할 이유가 1도 없어보이는데 천재 빼고는
-
지금 보면 성적이 그나마 잘 나왔던 이유가 재수 초중반엔 맨날 쳐@자고 놀기만...
-
ㅇㅇ
슈크란