미적분 개념 막 끝냈는데
게시글 주소: https://test.orbi.kr/00069800461
김기현t 파데로 끝냈는데
음함수 미분만 나오면 너무 헷갈리네요.. 문제에서 변수 2개 이상 주어지고 미분해서 어쩌고 저쩌고 해야하면 너무 헷갈려요. 이거 공략해주는 강의나 문제집 있나요..? ..?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제가 중대 오전 토요일 날 시험 본 학생인데 중대 1번 문제 확통 문제였는데 제가...
-
사이비한테
-
에리카 0
경영이나 중간공 가능할까요?
-
의대 모집정지 떡밥 의치대전 (주로 치대 약코를 주장하는 의뱃vs의대 적폐를...
-
반공동체적 정파들 거르려는 의도는 알지만 정시 일반이 줄어드는건 열받는걸? 나같은...
-
맛점하세요 6
-
편의점에서 바꿔달라 해야하나? 잔고 365원이라 급한데
-
사탐은 생윤으로 갈아끼울 예정이고 내년 자료 나온게 없는데 기출 한번씩 더 볼까요?
-
정원 외 정원까지 다 포함해서
-
나도 잘 생기고 싶다 20
-
학잠 비싸네 4
지금이 딱 철인데 아깝군..
-
그동안 정말 많은일이 있었어
-
안녕하세요 이번에 수능 본 06인데요 이번 수능 성적이 조금 맘에 안 들어서...
-
지금 가천대 기출문제 풀어 보고 있는데 채점 기준에 나온 문장 그대로 답안에 적어야...
-
https://youtu.be/RNQiNR9jlmI?si=PFdHgLpeNfNCGQT...
-
또 번따당햇네 9
뻥임뇨
-
우울해서 빵샀어 17
...
-
수시러고 최저 맞추는용인데 지1 자료해석 하기도 싫고 의문사 많이 당해서 물2...
-
시험 3주 남았음.. 공부 1도 안 해서 스스로 독학해야 함 진짜 오늘부턴 공부한다
-
스벅은 30분마다 갱신해야해서 ㅠ
-
노베인데 공통수학 모의고사점수 얼마정도 나와야하나요? 2
수상하 끝내서 이제 모고 봐보고 수원투 하려는데 몇점 이상부터 하는거 추천하시나요...
-
김범준 들으려고 하는데 그전까지 이미지 세젤쉬 하려고 했거든요. 근데너무 쉬울 것...
-
메리 크리스마스 4
-
해피 뉴이어 2
-
해피 발렌타인 4
-
나는 오르비 9
왜하지
-
이거 어디가요? 5
94 98 2 90 70 어디까지감? 제성적은아님
-
대상혁 은퇴 4
일단 2025년까지 계약기간이라는데 은퇴하더라도 일본에서 2026 아시안게임까지는...
-
제가 오르비하는 목적은 13
귀여운남붕이들의 신상을캐내기위해서입니다 으흐흐으흐흐
-
얼버기 1
흐에에에에에에엥
-
쉬운게 없다 0
하
-
오늘 되는 것도 부정확한 거죠? 성적표 나올 때까지 기다리면 되려나요 언제 12/6 되나...
-
ㄹㅇ엄인데
-
놀아줄 친구가 없어서랑.. 애니프사들 구경하는거랑.. 미코토의 예쁨을 알리기 위해서...
-
대유잼 역시 세상은 통계로 설명된다
-
10일이나 안 하니까 진짜 이상하네
-
기상 8
너무일찍일어난듯
-
이번수능 4
이번 수능 15,20,21,22,28,29,30틀렸는데 시발점부터 다시해야되나요?
-
서울대 합격기원 5일차 너무나도 가고싶구나
-
서울 시발 사람만 존나많음 숨막힘 서울에만 있는것중에 나에게 없으면 안되는건 한개도...
-
테뉴어 있는 국립대 의대 정교수야 그냥 자기 맘대로 일해도 뭐라할사람 없지만 사립대...
-
인가경 라인 한번만 돌려주실분 있나요..? 곧 논술입니다 결정해야돼요..
-
면접서 개쪽당하니 자동으로 생각남
-
동사 45 / 세사 48
-
강기본부터 새기분까지 강민철 커리 탔는데 26강E분 하기 전까지 뭐 들을지 추천 부탁드립니다
-
가천대 전기공 논술입니다
원래 처음엔 헷갈려요
기본적으로 한변수가 변할때 다른변수가 같이변한다:종속관계파악
변하는부분을 f(t),g(t)등으로 주면 그대로
안주면 미지수잡아서들어가면 돼요
하다보면 그냥 연립방정식문제랑 비슷하게 느껴질거에요
커넥션에 많아용
음함수 미분 , 합성함수 미분법의 선택은 idea설명으로는 예제부터 복습북까지
다시풀어도 이해가 어려웠는데
뉴런으로 합성함수 미분법의 선택 부분에서 강의를 들을때 도움을 많이 받았어요
변수와 상수를 구분하는것부터 변수를 잡는순간 변수들의 관계식을 찾고
필수적으로 해야하는것들을 알려주셔서
다른부분들은 idea로 충분했는데
합성함수의 미분법의 선택은 뉴런에서 라이프니츠, 뉴턴 어떤걸 어떤상황에 쓰는게
더욱 편리한지, 더욱 깔끔한지 배울수 있어서 좋았던거 같아요