수2 복습 질문
게시글 주소: https://orbi.kr/00069909046
복습하고 있는데, x^2+alphax+beta는 허근인가요? (beta>0)
x-r을 인수로 가지면 점근선이 되니까....?
궁금하네용
형님 누님들 수능 잘 보시길 응원합니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 윤석열에 어느정도 기대를 하긴 했음 비록 선거과정에 좀 이상한 짓을 많이...
-
지금이라도 늦지 않았다 영혼까지 끌어 부동산 올인해야하는 이유 3
오늘이 최저점임 이재명은 합니다
-
정벽 아기야 안아줘 15
아 일하기 싫어.. 놀았으니까 일 해야하는게 당연한검데 그냥아기하고싶어
-
이짤아는사람 6
.
-
한창 엔저때는 ㄹㅇ 나라전체가 거대한 블랙프라이데이였는데
-
언제 올리는게 가장 많이볼까요 수특 레벨3 곱셈정리까지+확통 필수...
-
神戸
-
오르비 1
-
그냥 노가다죠? 애들 대부분은 다 맞췄더라구요
-
내가 진짜 여자 겠음?
-
ㅈㄱㄴ? 윤 탄핵된 이시점에 의뱃분들 생각이 어떨까 궁금하네요
-
젼 기만자가 아니라 11
감자입니다
-
사실 얼굴 잘 못외워서 욕 많이먹음
-
정신의병
-
ㅇ
-
메가 칼럼에 재수해서 23242 받고 수시로 수의대가서 칼럼쓰는사람있던데 12
뭔가뭔가임 수시 준비하는 사람들한테는 도움되겠지만 정시한테는 도움 안되는데 하나하나...
-
코난의 벽 재의요구권은 코난 탐정이죠
-
누구덕에 술맛이 좋네요
-
다뒤진 오르비에 장작 넣어주는 리치킹인듯
-
으흥~
-
딥피드 점령당함 2
너가갤주해라
-
+1을 해야겠어
-
저때 인설의 이상급에서 수능보던 사람 내가 아는 케이스만 2-30개는 됐었는데...
-
다들 자러 가라
-
권당 15 22 30번급 문항 24문항(전체 50문항) 문항 퀄리티 ㅆㅅㅌㅊ 지금...
-
아차! 내란견들에게 뻐큐하는 형식이햄이었어요!
-
꼭 약속 전날밤에 뭐가 터짐
-
전쟁을 일으킨 놈들을 말야.
-
엄
-
이제 한평이냐? 4
왜 바꿈?
-
공팀지수가 4임 ㅋㅋ 내가 취직하기전에 마지막기회같은데
-
아 인생
-
이동준 리엑트 파이널/일반 볼텍스 수 1 2 미적 서킷 20-48회차 빡모 어싸...
-
마그네틱 끝까지 듣기 성공 ptsd 극복이냐
-
자러가겠습미다.. 12
자러가라고하네요ㅠ 거역할수가읎다
-
벌써부터 보이는건 기분탓일까
-
입학이 곧 처단대상인 학과인데 ㅉㅉ
-
처음엔 나도 좀 예쁜 레어 멋진 레어 가지고 싶었어 4
연달아서 여섯번 물리니깐 그냥 폭주한거지 정작 웃긴 건 물렸던 레어는 다 팔렸다는 거임
-
학교인증만 하고 탈퇴해야지
-
요즘으로 치면 서바 이감 기깔나게 푸는거로 어맛 저 낭군 멋져 이ㅈ랄하는거 아님?
-
개콘 공채 소속이냐? 19
둘이서 뭐하노 ㅋㅋㅋㅋㅋ 일단 이젠진짜 점마는 공연성은 성립해도 특정성 부터가...
-
신청 안되죠??ㅠ 8월에 고졸따는데 6평은 학원에서도 못 보는 거 맞나요? 혹시...
-
오늘 독재에서 귀차나서 안외운 영어단어..
-
레몬멜론쿠키레몬멜론쿠키 쿠키!
-
이어폰 어디갔지 0
집에 있다고 뜨는데 ㅡㅡ
-
내년 현역은 잠재적 재수때문에 확통을 더 할거같다
-
탈릅해야지 4
ㅇㅇ
그냥 fx 한번에 구하고 하나씩 대입해버면 되지 않나용
n=1일 때만 놓고 생각한다면 1이 아닌 실수 p와 k에 대해 (x-p)(x-k)를 인수로 가져도 괜찮죠!
g(x)가 x-r을 근으로 못가지는게 맞겠죠..?
f(x)=(x-1)^2(x-r)로 두었을 때 g(x)가 (x-r)을 인수로 가져도 (x-1)을 인수로 갖지 않는다면 등식이 성립합니다. 이후 n=2일 때 f(x)=(x-1)^2(x-2)임을 확정지을 수 있고, n=3과 n=4에서 g(x)를 결정하실 수 있습니다.
아 그런 생각은 못했네요..ㅎㅎ 극한값이0이니까, 분자의 x-1 인수>분모의 인수 x-1라서
분모가 x-1을 근으로 안 가질수도 있겠군요!!
근데, 삼차함수면 최소 한 점에서 만나지 않나요?
그게 x-1아닌가..?
x-1을 인수로 가지는 이상 나머지는 근으로 안 생기는것 같은데(뇌피셜..ㅜ)
일단 아래 풀이는 맞을까요?
n=1일 때, f(x)=(x-1)^2(x-r)로 두면 g(x)가 (x-r)을 인수로 가져도 괜찮습니다. x가 1로 가는 극한을 조사하는 상황이기 때문에 (x-1) 외의 인수는 극한이 발산하는 데 영향을 주지 않습니다. 그래서 g(x)가 (x-r)을 인수로 가져도 괜찮습니다. (x-r)(x-p) (p는 1과 r이 아닌 실수) 도 괜찮고 (x-r)^2도 괜찮습니다.
만약 r=1이라면 f(x)=(x-1)^3이고 g(x)=(x-1)^2(x-k)인데 k=1이라면 등식이 성립하지 않아 k가 1이 아닙니다. 그런데 k가 1이 아니면 n=2일 때 f(x)=(x-1)^3에서 등식이 성립할 수 없기 때문에 모순이 발생합니다. 따라서 r이 1이 아닌 실수이고, n=2와 n=3 그리고 n=4일 때도 마찬가지로 생각해 보시면 g(x)가 (x-2), (x-3), (x-4)를 인수로 갖지 말아야 함을 확인하실 수 있습니다.
아 지금 깨달았는데,
(가)조건에 의해서 g(x)는 x-1을 근으로 가지는거 아닌가요?
네, 정확히는 g(x)=(x-1)Q(x)로 두었을 때 Q(x)의 인수에 대해 이야기한 것이라 생각해주시면 감사드리겠습니다!
(x-1)을 추가로 인수로 갖는지 그렇지 않는지

감사합니다:)정의역이 모든 실수라든지 그런 경우에는 약분 불가능한 0인수가 분모에 있으면 님 말대로 되는게 맞는데
이 문제처럼 정의역이 한정되어 있는 경우면 분모에 약분되지 않는 0인수가 있더라도 항상 수렴할 수 있죠 분모가 0이 되는 지점이 정의역 내에 포함만 안 되면
아, 그러면 문제에 모든실수에 대해서... 이런 조건이 있어야 제가 사용하는게 인정되는건가요?
f와 g 모두 다항함수이기 때문에 정의역은 실수 전체의 집합이 맞습니다. 다만 말씀하신 것처럼 n=1, 2, 3, 4일 때 각각 x=1, 2, 3, 4에서의 극한을 조사하기 때문에 x=1, 2, 3, 4 '근처'만 고려하는 것으로 바라볼 수 있고, 따라서 x가 1로 갈 때의 극한을 조사할 때 분모에 1이 아닌 실수 k에 대해 (x-k)가 있더라도 극한이 발산한다거나 함수 f(x)/g(x)가 수직 점근선을 갖는다거나 생각할 필요가 없죠!
정확히 말하면 책참님 말이 맞습니다
저는 n이 한정되어 있다는 걸 말하고 싶었습니다

정말 감사합니다 :)
정말 감사합니다!! ㅜ답변자님 아니였으면 큰일났었겠군요