수2 복습 질문
게시글 주소: https://orbi.kr/00069909046
복습하고 있는데, x^2+alphax+beta는 허근인가요? (beta>0)
x-r을 인수로 가지면 점근선이 되니까....?
궁금하네용
형님 누님들 수능 잘 보시길 응원합니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오목 시작 0
가볼게요
-
자다가 깼네.... 안녕하세요? 처음 뵙겠습니다
-
있었다는 흔적을 남기고 싶음
-
ㄹㄹㄹㄹ 이러고 잇으면 머하나
-
사문 인강 1
임정환 듣다가 27강 도표에서 걸쳐서 무슨말을 하는지 도통알수없고 판서랑 책이랑...
-
현역 고3이고 이번 3모 화작 3개틀리고 74점 나와서 2떴는데 언매 해도...
-
새르비 1
새르비 여러분들 맞팔해요
-
와 ㅈㄴ섹시하네 3
-
새벽이라우울하군 1
잘까
-
연계였어서 그냥 쌩으로 물어봐도 될 문항을 빈칸형으로 15번에 박아서 물수학이란 평을 듣게함
-
다 나가네 걍 1
으음
-
5등급 현역 정파 국어 공부법 좀 알려줘 제발!!!! 간절함!!!!! 2
잉단 난 정신 개늦게 차림 고1 2학기때 정신 차린줄 알앗는데 아니엿고 고2때가...
-
아니면 리세마라 기회라도
-
수의대
-
더 푸는건 시간 좀 아까운데 그냥 자야겠다
-
폰끄고 자라 넵
-
D-221 0
영어단어 영단어장 day1 영어 어려웠던 문장 복습 힘 빼고, 휴식기간 가졌으니...
-
또 풀어볼까
-
인생 망한 시점 2
2005년 9월 8일
-
의치한 중에서 어디든 괜찮은데 그래도 의대가 의료행위 할 수 있는 범위도 많고해서...
-
확실히 뭔가 계획적인 느낌이 듬 입시 계획부터 해서 공부 말고도 앞으로 해야 할...
-
설수의 기원 3일차 11
설수의 오르비언과의 밥약도 기원.
-
그냥 순수하게 재미씀 읽고있으면
-
이 구간구간마다 실력차이가 조오오오온나 큰데 또 저기서 원점100...
-
새벽엔 3
글 리젠이 안돼요 오르비 말고 할게 없는 옯붕이는 울어요
-
N티켓 괜찮네 4
쉬워보여서 안풀려다가 밤에 심심해서 푸는중 문제가 깔끔해서 재밌네
-
오이이아이오오이이이아이
-
못 막음
-
나의 우울증 극복기 32
이런얘기 여기서 하면 비호감 스택 적립이겠지만 누군가에게 조금이라도 도움이 될까...
-
영상 봤음
-
이것만 올리고 자러갈게요
-
유지장치 4
교정기 유지장치 끼기 싫어서 일년을 안썼더니 원래대로 돌아왔어요 엄마 미안해 난 이대로 살게
-
이겨다
-
선착순한명 3
차단해드림 차단자리너무여유로움
-
고2 상위권 남학생, 생기부 너무 대충하는데 진짜 속터지네요. 내가 대학가냐 니가 대학가지…
-
슬슬 3
새르비 합류선언
-
아직도 적응 안 됨 나에게 미기는 미분기하학인데.. 심지어 비슷하기까지 하네 ㅋㅋ
-
그런거임
-
좀 채울까 82872같은 애들
-
니가 들어가라
-
정시일반 의대 기준 3년 풀로 박았으면(현역 재수 삼수) 일반적으로 각이 나온다고...
-
예전에 풀었던 거 업로드
-
포도먹는중 6
이거맛있네요
-
엔티켓 살까 말까 고민 중인데 시즌1은 입문용¿정도로 쉬운 거 같아서요 굳이 안...
-
공통하느라 유기하고 있었는데 매일 1~2시간이라도 꾸준히 해야겄다
-
나도 연애썰 4
하나 풀어줄까
-
남르비들 지브리 성전환 ㅇㅈ 가능한가요?
-
접수일얘기가 아무곳에도 안올라왔길래여
-
3모 3등급인데요 6모는 1등급 맞고 싶습니다 70분안에 다 푸는건 어떤 느낌일지...
그냥 fx 한번에 구하고 하나씩 대입해버면 되지 않나용
n=1일 때만 놓고 생각한다면 1이 아닌 실수 p와 k에 대해 (x-p)(x-k)를 인수로 가져도 괜찮죠!
g(x)가 x-r을 근으로 못가지는게 맞겠죠..?
f(x)=(x-1)^2(x-r)로 두었을 때 g(x)가 (x-r)을 인수로 가져도 (x-1)을 인수로 갖지 않는다면 등식이 성립합니다. 이후 n=2일 때 f(x)=(x-1)^2(x-2)임을 확정지을 수 있고, n=3과 n=4에서 g(x)를 결정하실 수 있습니다.
아 그런 생각은 못했네요..ㅎㅎ 극한값이0이니까, 분자의 x-1 인수>분모의 인수 x-1라서
분모가 x-1을 근으로 안 가질수도 있겠군요!!
근데, 삼차함수면 최소 한 점에서 만나지 않나요?
그게 x-1아닌가..?
x-1을 인수로 가지는 이상 나머지는 근으로 안 생기는것 같은데(뇌피셜..ㅜ)
일단 아래 풀이는 맞을까요?
n=1일 때, f(x)=(x-1)^2(x-r)로 두면 g(x)가 (x-r)을 인수로 가져도 괜찮습니다. x가 1로 가는 극한을 조사하는 상황이기 때문에 (x-1) 외의 인수는 극한이 발산하는 데 영향을 주지 않습니다. 그래서 g(x)가 (x-r)을 인수로 가져도 괜찮습니다. (x-r)(x-p) (p는 1과 r이 아닌 실수) 도 괜찮고 (x-r)^2도 괜찮습니다.
만약 r=1이라면 f(x)=(x-1)^3이고 g(x)=(x-1)^2(x-k)인데 k=1이라면 등식이 성립하지 않아 k가 1이 아닙니다. 그런데 k가 1이 아니면 n=2일 때 f(x)=(x-1)^3에서 등식이 성립할 수 없기 때문에 모순이 발생합니다. 따라서 r이 1이 아닌 실수이고, n=2와 n=3 그리고 n=4일 때도 마찬가지로 생각해 보시면 g(x)가 (x-2), (x-3), (x-4)를 인수로 갖지 말아야 함을 확인하실 수 있습니다.
아 지금 깨달았는데,
(가)조건에 의해서 g(x)는 x-1을 근으로 가지는거 아닌가요?
네, 정확히는 g(x)=(x-1)Q(x)로 두었을 때 Q(x)의 인수에 대해 이야기한 것이라 생각해주시면 감사드리겠습니다!
(x-1)을 추가로 인수로 갖는지 그렇지 않는지

감사합니다:)정의역이 모든 실수라든지 그런 경우에는 약분 불가능한 0인수가 분모에 있으면 님 말대로 되는게 맞는데
이 문제처럼 정의역이 한정되어 있는 경우면 분모에 약분되지 않는 0인수가 있더라도 항상 수렴할 수 있죠 분모가 0이 되는 지점이 정의역 내에 포함만 안 되면
아, 그러면 문제에 모든실수에 대해서... 이런 조건이 있어야 제가 사용하는게 인정되는건가요?
f와 g 모두 다항함수이기 때문에 정의역은 실수 전체의 집합이 맞습니다. 다만 말씀하신 것처럼 n=1, 2, 3, 4일 때 각각 x=1, 2, 3, 4에서의 극한을 조사하기 때문에 x=1, 2, 3, 4 '근처'만 고려하는 것으로 바라볼 수 있고, 따라서 x가 1로 갈 때의 극한을 조사할 때 분모에 1이 아닌 실수 k에 대해 (x-k)가 있더라도 극한이 발산한다거나 함수 f(x)/g(x)가 수직 점근선을 갖는다거나 생각할 필요가 없죠!
정확히 말하면 책참님 말이 맞습니다
저는 n이 한정되어 있다는 걸 말하고 싶었습니다

정말 감사합니다 :)
정말 감사합니다!! ㅜ답변자님 아니였으면 큰일났었겠군요