다들 수학 제일 극혐하는 파트가 어딘가요
게시글 주소: https://test.orbi.kr/00070210970
저는 수열이랑 수2 접선활용쪽
수열은 그냥 극혐하는 유전자가 있는거같고 수2접선쪽 앞에는 진짜 그냥 계산밖에 없어서 싫음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대 라이브 수강신청 시작됐나요?? 입학 안내 문자 신청해 놨는데 아직 안...
-
올해도 현장에서 사문 곡소리났는데 1컷45-6정도 내년은 어떨까 ㅎㅎ
-
개맛있는디
-
물화12가 다 이러니까 이제 뭐가 맞는지도 모르겠네
-
작수 과탐 나락가고 비상경 문과 교차했는데 학점 상위권 나오길래 '어 나...
-
미적 80 2
공 3틀 미 2틀 80 2등급 가능성 얼마나 보시나요?ㅜㅜㅜ
-
현역 생1 2등급 목표 유전 비유전 따로 들을 생각도 있음
-
. 먼 최종보스는 ENTJ로 고정이냐??? 엔티제만있으면 지구멸망이네
-
얘가 만취하고 질질 짜면서 내가 세상을 바꿀거야 어흑흑 이거 무한 반복함 생각 많고...
-
상대적으로 좀 못하는 과탐러들이 사탐으로 도망가니까 원래 있던 과탐러들도 손해보고...
-
허씨발
-
너를 달로 데려다 줄게 낭만임뇨,,,,,
-
저가 짠 스쿼드고 제 스쿼드피파 인데 어떤가요? 궁금
-
시대 1, 2, 3컷 22
이게 맞다면 다같이 혀깨물고 죽읍시다 쇠젓가락 손에 쥐고 전기콘센트에 삽입ㄱㄱ 물1...
-
강기원vs김현우 1
공통1틀 미적2틀 88입니다 수학 만점이 목표인데 누굴 더 추천하시나요?
-
난 괜찮아 1
-
이거 좀 아쉽네 5
이 사람글이 제 일 재밌는데,,,,,,,,,,
-
어케 알 수 잇는거예여? 현역들만 학교통해서 알 수 잇는건가요?
-
아니면 섞어틀이 유리한가 시대컷 기준 2컷이 85-87이던데 확통 -3점인 85인데 되려나 하..
-
건동 높공이면 그래도 현역때는 나름 성공한거겠조.. 목표보다 낮게 나와서 내년에도 불질러볼게요..
-
내일부터 8시 이전에 일어나지 않으면 전 얼리버드가 아니라 벌레임뇨 제대로 좀 살아야겠음
-
비유전은 백호 듣고 유전은 한종철 들으려고 하는데 괜찮아? 이러면 후반 커리 어떻게 타?
-
나 기분 와리가리가 너무 심한 것 같음뇨
-
"머리가 하얘졌죠" 뽑아 놓고 '스스로 나가라' 압박…무슨 일? 0
석박사 과정에 합격했는데 연구실 선배에게서 입학을 취소하라는 압박을 받고 결국,...
-
노베이스 질문 0
전과목 노베이스인데 어디서부터 시작해야 할까요?ㅠㅠ 문과입니다. 답변 부탁드려요....
-
미적 88 1
미적 3틀 88점 1 뜰까요...?
-
고3동안 하루에 최소2시간씩 오르비한듯…
-
오르비<<<이새끼만 아니었어도 순공 15시간은 늘었을듯
-
https://link.yeolpumta.com/P3R5cGU9Z3JvdXBJbnZp...
-
질문메타 ㄱㄱ 16
-
수1은 프메듣고 수2는 뉴런듣고싶은데 이렇게 해도 괜찮을까요 ㅠ
-
고2부터 꾸준히 물리한 전교 1등 친구(카이 수시합) -> 물리 40점 3등급 그...
-
인강중에 유전goat ㄴㄱ라고 생각하심?
-
영어 해설이지만 0
토트넘 경기를 무료로 볼 수가 있다 ㅎㄷㄷ
-
보통 호경은 취업 어디로해요? 호텔 같은 데 호텔리어로 취업하나
-
공부 시작 0
삼수가 마지막
-
엄 오래잤네 7
그냥 자자...안되겠다
-
오르비 게시글의 제목을 빨간색으로 만들 수 있는 방법을 모색해 봤는데 을 이용해서...
-
카톡은 해야되는데 폰을 좀 끊고싶어서 화면이라도 줄여볼까
-
뭔가 나도 잘보긴했는데 여기오니까 ㅈ밥인거같음
-
다이어트16일차 1
아침 딱히 먹을게 없어서 물로 때움 점심 개미친레전드존나맛있는집밥. 저녁 샐러드에...
-
섬개완 꼭 들어야 하나?
-
스포티비가 없엉 ㅠ
-
맞팔 ㄱㄱ 6
-
미적 85인데.. 이러면 낮~중간 2되는건가.. 흠.. 77~80이...
-
대성 정상모쌤 올인원 미적 괜찮나요?
-
아가 취침 3
모두 군밤
삼각함수 좋아요
노베킬러고트
저런 힘내세요
도형까진 할만한데
사인 코사인 그래프 지멋대로 움직여놓고 교점 찾는 문제가 참....
아 이거 저만 이런거 아니였네요 삼각방정식 그냥 패고시픔
이번엔 여기서 딱히 걸릴 만한 문제가 안 나왔으니 다행이지
수열의귀납적정의
크악노가다시러
수열 자체도 극혐인데 그 안에 더 싫은게 귀납수열 크아악
삼각함수 도형이요.. 안보이면 그 시험은 조진거고
보이면 그 시험 잘본거인 수준으로 버거움
도형은 의외로 행동강령 정리하면 잘보임
나중에 칼럼이나 써볼까
2등급따리가 칼럼써도되나
전 수열이 제일 재밌던데 ㅠㅠ
기하로 극복하시는건 어떰
악마;
솔직하게 확통 경우의 수가 킬러로 나오면 개빡일듯 ㅋㅋㅋㅋ 28 수능이 매우 기대되는 부분
내신때 확통하다가 토하는줄
28수능 이후라고 해도 경우의 수가 킬러로 나올 가능성은 거의 없다 생각해요
걍 지금 수능에서 선택과목 확통 고른 거랑 거의 같은 범위인데 그대로 수1수2로 변별할 듯
역사적으로 경우의 수, 순열, 조합이 수능 범위가 아니었던 때가 더 드문데 킬러급으로 나온 건 거의 없었죠...
지금 미적분 표본까지 변별해야하는데 수1수2만으로 한다고?
상황이 좀 다르죠
그냥 옛날 B형시절처럼 1컷 96~92 정도로 지금보다 1컷이 높은 수준으로 낼 가능성이 훨씬 높죠
옛날 가형/B형이 표본수준이 낮았던 것도 아니고, 수1/수2가 어려운 문제 못 내는 파트도 아니고 (사설들 보면 미적분 쉬운 회차도 1컷 77 찍고 있는 거 예사잖아요)
옛날에는 미기가 필수여서 굳이 확통으로 변별안한거 아닌가요 수1/수2를 지금보다 고이게 내면 그냥 노마더인데 ㅋㄱㅋㅋ..그렇다고 28체제에서 컷을 높이면 변별이 안되고
수2는 솔직히 이미 한계치까지 간 거 같긴 한데 ㅋㅋㅋ 수1은 아직 무궁무진하다 봅니다
확통, 그 중에서도 조합론 파트는 평가원이 일부러 선을 넘지 않는 거라고 생각해서요.. 예전 스티커 문제 때도 '사과'한 적도 있다 들었고
뭐 이론적으로야 KMO 조합론 문제 그대로 갖다 박아놔도 교육과정 부합하잖아요
가나형 킬러몰빵 시절 나형에서
그냥 확통 킬러 내는 게 아마 교수급 출제자 입장에서 더 편할텐데
그런 거 냅두고 170930(나) 같은 이상한 노가다 문제를 내는 걸 택한 이유는 있다 생각해요
어디까지나 개인 의견임을 전제하자면
올해 6평 확통 28번, 30번, 23학년도 확통 30번이나
17~21 확통 중에서 가장 어려웠던 문제들 정도가 난도 맥시멈이 아닐까 싶어요
그리고 위에도 말했지만 저는 전공통 체제로 가면 옛날처럼 1컷 96, 92 정도를 목표로 출제할 가능성이 훨씬 높다 생각해요
지금처럼 1컷 84 전후가 일반적이게 된 것 자체가 선택체제 도입 후이고,
22예비시행 문제를 보면 이는 선택체제 도입 후의 입시 변화를 고려한 의도적인 변화라고 생각해서요
미분기하 ㄷㄷ
선 안넘고도 충분히 어렵게 할 수 있는 영역이라 ㅋㄱㅋㅋㅋ..적어도 확실한건 지금까지 확통시험지 중에서는 제일 어려울 것 같습니다
그리고 이 짓을 다시 하진 않을 거 같긴 하지만
수1 범위에서는 유서가 깊은 끝판왕 변별문제를 낼 수 있죠
"격자점"
대학수학능력시험 수학 영역의 모든 응시자가 대수, 미적분I, 확률과통계 (2015 개정 교육과정 기준 수학1, 수학2, 확률과통계) 범위 내에서 문항을 해결하고 변별되어 원활한 대학 입시가 이루어지도록 하려면 확률과통계에서 난이도가 매우 높은 경우의 수 문항을 출제하는 것이 불가피하지 않을까 생각했는데, 그동안의 기출문제에 근거를 두고 다르게 예상하시는군요
미적분I의 경우 이미 다양한 사고 방식이 다루어졌다는 데 동의합니다. 대수에서는 고2 전국연합학력평가 시험지에서 확인할 수 있는, 그러나 아직 수능에서는 본격적으로 다루어지지 않은 사고 과정과 상황을 출제하면 28, 29, 30수능 정도에서는 충분한 변별력을 확보할 수 있지 않을까 조심스레 생각해 봅니다.
개인적으로 2022 개정 교육과정에 기반한 새 수능의 핵심은 '융합'에 있을 것이라고 생각합니다. 조건 A, B, C를 만족시키는 모든 삼차함수 중 한 가지를 골랐을 때 그것이 조건 D까지 만족시킬 확률을 구하라는 문제나, 구체적인 수치를 묻지 않고 선지 판단을 시키던 2015 개정 교육과정 물리학I처럼 정확한 접점의 x좌표를 구하도록 하지 않되 지수함수와 로그함수 같은 초월함수의 접선의 방정식을 슬쩍 다루게 한다거나...
25수능을 향해오며 점점 공통수학1, 공통수학2 (2015 개정 교육과정 수학(상), 수학(하)) 의 비중이 커져왔다고 느끼는데, 이 흐름을 따라간다면 두 2x2 행렬의 성분으로 서로 다른 여덟 개의 함수를 제시하고 두 행렬을 곱해 얻어진 행렬과 네 실수를 성분으로 하는 2x2 행렬이 같다는 조건을 주어 연립방정식의 해를 구하도록 하는 문항도 새 시험지에서 확인해 볼 수 있지 않을까, 물론 행렬식도 배우지 않고 가우스 소거법도 배우지 않기 때문에 이러한 방향으로 문항이 출제된다면 교육과정 선밟기를 첨예하게 해야할 것 같긴 합니다만
행렬을 굳이 고1수학에 넣고, 역행렬조차 가르치지 않는 이유는 행렬 재추가가 입시 부담에 영향을 주지 않게 하기 위해서입니다. 따라서 새 수능에 행렬으로, 그것도 선형대수와 줄타기를 하는 수준으로 어려운 문제가 나오는 것은 불가능하다고 생각합니다.
마찬가지로 다항함수의 미적분과 확률을 섞는 건... 누가 봐도 선을 넘는 출제행태라 불가능하다고 봅니다. 내신에서도 그런 짓은 웬만하면 안 해요. 설사 단발성으로 한 번 정도 출제되더라도 지속적일 수는 없을 거라 생각해요. X걱세 같은 데서도 가만 있지 않을 테고요.
무등비 삼도극
그거 아직도 나오나요
교과 내용이긴 하죠
모든 ~의 합
여러 개 구하기 싫은데
지로삼 미만 잡
09교과 시절 미2안하면 저 내용 첨 접해도 어려움
전 미적분.. 계속 틀리네요
특히 적분
제일 첫인상 흉악했던건 지로삼이요!
현대대수요
헉
가환환을 탁
가환환이 commutative ring인가
마자용
진짜 수학 한글 번역 기괴한 거 같음
옹골집합 못참는데..
옹골집합 이러는 거 보니까 너무 쓸데없이 김김계 본 수학과 같네
수리 복전하세요?
미적 전부요
수열 지로 접선계산
기트남어 수1 미적 도형은 개재밌음
공간도형
적분
수열
자연수의 덧셈과 뺄셈
이 모든 고통의 시발점
수학은 다 재밌는듯. 다만 문제가 어려울뿐...
치환적분 부분적분 너무싫음 계산실수 무조건 터져서 .. 계산 길어지면 뇌절
중적분
지수로그함수 그래프
이게 맛있는건데잉;;;;;;;;;!!!
정적분으로 정의된 함수/지수로그 쌩계산/공간도형
수열 극혐
ㅇㅈ
수열 못이김
수열