회원에 의해 삭제된 글입니다.
게시글 주소: https://test.orbi.kr/00070803811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
야식 먹어야겟다 5
한끼밖에 안먹엇내
-
고양이 재밌었다 0
정신사나우니까 다시 바꿔야겠넹
-
연애하면서 공부 4
어케 생각 하십니까
-
그만.
-
둘 중 더 좋은거 투표 12
.
-
엉겹결에 달러 투자 성공해버렷내..
-
잘모르겠는데 계속 움직이려고해도 안움직여지다가 갑자기 깸 뭔가 꿈꾼 느낌임 근데 귀신본적은 없음
-
https://m.fmkorea.com/?mid=best&document_srl=79...
-
500cc 3잔 새로 세병 하이볼 2잔 히히헤헤꼴꼴ㅋㅋ루삥뽕
-
가위눌린적은 있는데 귀신본적은 없는데;; 걍 몇초동안 몸이 안움직이는 체험만함
-
내 글에 훌리들 총집합한느낌 막 싸우진 않아서 글은 냅두고있는데 이러다 싸우는거 아니겠지
-
몬가몬가임...
-
재수로 수학 올리신분 13
반수하려고 지금부터 공부 시작하려는데 작수 공통1틀(22) 미적4틀(27 28 29...
-
그때도 정시비율 지금이랑 비슷하지 않았나? 교차가 없는데 더 어려울 수가 있음?...
-
컨텐츠비 아껴야제 ㅇㅇ
-
제가 잘모르는데 2
원래 꿈 내용이 정해져있는데 자각몽을꾸면 그걸 본인스스로 바꿀수있음? 원래 좀비한테...
-
요새는 그냥 돈 잘 벌고 나랑 잘 맞는 아내 만나서 적당히 일 스@근하게 하고...
-
가위는 많이 눌려봤는데
-
님들님들그러면 5
이거되는거임? 14명뽑고 36명지원
-
인스타도안하시고 qna도 직접안하시니
-
모벤떠서 다시함
-
수학 문제가 안풀려 11
술만 마시면 머리가 안굴러감
-
반갑구만
-
아 저녁 뭐먹지 0
흠
-
연대 빵이라하면 4
컷이 어디라인인거임??
-
ㅇ
-
연애하고싶다 6
안 한지 1년이 다 되어가네
-
티켓팅 때문에 피시방 가야 하는데 어떤 곳은 4060쓴다고 홍보해서 좋은 건지 잘 모르겠어요
-
성격 잘 안 맞으면 굳이 어울릴 필요 없는 거 같아요 4
취준~취직 시기 되니 다들 바쁘고, 여러 이유로 물리적으로도 멀리 간 친구들도 있고...
-
전 이뱃을 못 받네요? 이거 기울어진 운동장이라고 생각해요
-
고대폭 연대빵일줄 알았는데 둘다빵이노 스카이는 허상이 맛다..ㅇㅇ( :゚皿゚)
-
내가뭘했다고정진데
-
계명의 질받 21
계명의 궁금한거 있으면 ㄱㄱ
-
러닝머신 탈 때 1
미3누,주둥이만큼 시간 잘 가는게 없음
-
자면서 공부하고 깨어있을땐 놀면되는데 ㄹㅇㅋㅋ
-
선택장애 왔다 2
ㅠ
-
나도 학원도시에서 초능력 써볼랭
-
와 ㅆ 3
화 1뉴비 1명더생김 미쳐따
-
붙여만 주신다면 미래의 딸내미 이름을 경희나 희경이로 지을게요...
-
근데 별 말 없으심 이왜진
-
90점대 처음 찍어본거였어
-
후하후하
-
정시를 아예 못써요? 아님 정시 합격증까진 나오는데 등록이 안 되는 거에요?
-
전후사정 모르고 한 게시물를 통한 궁금함으로 물어본 건데 정말 죄송하네….
-
가군 동아의 지균 스나하기 전에 그냥 건수 붙는데 쓰고 건뱃 수뱃 달까 생각함 다군...
-
스블 기코 0
스블 들거면서 기코는 너무 시간 낭비인가요? 스블 듣는데 머리 깨질거 같아서 좀...
-
. 3
글삭 매크로 저만 안되나요
-
[제2외국어/한문 영역 가이드] 3. 목표 성적과 의사소통의 중요성 9
이전 글에서 여러 차례 언급했듯이, 제2외국어 영역은 문자-어휘(5문항)...
-
현장에서본것들중에 가장 계산 빡센것이 무엇이었나요 저는 2506 2509 2511...
-
오르비 장단점 4
장점 : n수를 할 용기가 남 단점 : n수를 할 용기가 남
다음곡선 ~~가 위로 볼록한 구간에 속하는 실수 x가 아닌것은? 이랑
곡선~~~이 실수 전체의 구간에서 아래로 볼록할때
이런 두문제가 있는데 첫번ㅁ재ㅜ 문제풀때는 f"(x)과 0 관계를 볼때 =이 안붙고 두번째 문제 풀때는 =이 붙는 이유를 모르겠어요ㅠㅠ 두 문제 질문에서 뭐가 다른게 있나요?
질문이 잘 이해가 안됩니다
앗 다른분께도 질문했던거 복붙해서 쓰느라 그러네요ㅠㅠ
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
제 능력이 안되서 말로 설명하기가 힘드네요
개념책을 같이 놓고 본인이 깊게 생각해보세요, 그리고 안된다면 다른분께 여쭤보세요
?? 그 두개 동치 아니었음? 헐
f'' > 0
아래로 볼록
f'' ≥ 0
모두 동치 아니에요
맨위 맨아래는 당연히 다르게 생겼으니까 다른데 아볼이랑은 각각 뭔차이죠?
찾아보니 직선도 볼록이라고 볼 수 있네요.. 아래 두개는 동치일거 같습니다
예를 들어, f(x)가 상수함수면 f''는 0이지만 볼록성을 묻기는 애매하죠
이런문제는 수능에는 안나올거 같아요 그냥 두개 동치라고 생각하셔도 될듯
아 뭔지 알겠어요 감삼다 ㅎㅇㅌ
저도 님 덕분에 좀 자세히 찾아보게 되었는데 볼록(convex)이 두종류가 있음
볼록 / 강한 볼록
여기서 직선은 볼록함수기는 하지만 강한 볼록은 아님. 마치 상수함수가 단조증가이지만 강한 증가함수는 아니듯이
그리고 수능에서 다루는 볼록성은 강볼록을 의미함. 따라서 상수함수 / 일차함수는 "수능 범위"에선 위로 볼록하지도, 아래로 볼록하지도 않음
영어로 된 용어들을 제가 한글로 바꾼거라 틀린 용어가 있을수도 있어요