이거풀어보새요
게시글 주소: https://test.orbi.kr/00070884019
난 너무 찝찝하게풂.
개인적으로 뭐처럼 보이는거 직관으로 미리 찍어놓고 그게되는이유를 논리 끼워맞춰서 풀어내는거보다
정공법으로 논리적용해서 정방향으로 뚫어버리는걸 좋아하는데
그러질못함
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
추천해줄 책이나 강의 있을까요?
-
하 코어관리 열심히 해야겠뇨
-
통째로 번역한다고 (책 한 권/논문 한 편) 통+번역인 줄 알았는데 통역 +...
-
서울역에서 먹을지 대치동에서 먹을지 고민이네용
-
공스타맞팔구함 0
구함요
-
중대에서 같이 다닐 오르비언 구해요
-
오티 갔다 와서 3월에 해야지
-
서강대 조발 1
언제 하냐 아아으의아으의이아에
-
면허따야대는데 1
ㅠㅠㅜㅜ
-
대깨설 투과목 뭐할까요 21
지1은 계속 끌고갈 생각이고 나머지 하나가 고민인데 물1을 계속하든 다른 투과목으로...
-
한 3~4일 빡공하면 담날부터는 머리 깨지면서 어렵고 깊은 사고를 요구하는...
-
국토대장정이나 챌린지 형식의 여행 유튜브 너무 재미있음...
-
만날 기회가 있긴 할까..
-
순공 0시간 드가자
-
간쓸개 0
나옴?
-
꾸준글
-
얼?버기? 6
-
현우진 시발점 0
시발점 강의 꼭 들어야하나요? 3,4등급 정도 나오는데 시발점 문제들(본책)은 거의...
-
내가 번역을 크게 잘못해서... 나 때문에... 말이 심하게 나왔대... 나는...
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
이번에 재종에서 재수함 공부는 진짜 선생님들이나 애들 누가 봐도 열심히 했음 근데...
-
Day 1씩 외우는 중인데 *표시 있는 작은 검정단어 빼고 예문 보면서 뜻 다...
-
운전면허 감독관 계속 옆에서 핸들에 힘주지마라 차선 한참 남았는데 브레이크 밟으라고...
-
칼럼 또 씀뇨 0
ㅇㅇ
-
제 첫닉 아시는분? 11
설마 있겠어
-
2탄에선 우리 옯붕이들이 실제로 할 수 있는 것들로 준비 해봤다 1. 기본중의...
-
안녕하세요 인간쓰레기에서 인을 담당하고 있습니다
-
상지한 a형 2
37/149 점공 합격기원.. 진짜 점공 안들어오네요 ㅋㅋㅋㅋ 빵이면 좋겠다
-
3년전 사귀엇던 남자고 내가 번호바꾸고 카톡 전번으로 추가랑 추천친구 다...
-
차라리 연대나 서강대 성적이 되면 괜찮은 거 같은데 중앙대랑 경희대는 사탐 감점이...
-
영어 고1은 무난히 1등급 떴는데 고2 올라오니까 단어가 한 지문에 한 6-7개씩...
-
맞팔구 6
-
가군 연고대로 보통 빠지심?
-
떠날때가 된건가
-
잇올 어떰? 8
국영수 노베 수준이고 탐구만 11인데 잇올+수학영어 학원 어떰 ㅠㅠ? 서울 중구...
-
골댕이 안고싶다 2
포근한 털과 품에 안겨 잠들고 싶다
-
가끔 문학 문제를 풀다 보면 진짜 애매한 문제 가 나올 때가 있다. 이런 문제들의...
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][혜화 밥약 추천] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
해부실습
-
추천하시나요? 하신다면 어떤 점이 좋은지 알려주시면 감사요ㅠㅠㅠㅠㅠㅠㅠ
-
그게 나야 바 둠바 두비두밥~ ^^
-
온동네 강아지들에게 사랑받는 직업 부럽다
-
ㅎㅇ반말함 오늘은 수능영어 등급컷을 표로 만든 부분을 들고와 봄 이걸 왜 캡쳐해,...
-
서울 내 자소서 면접 첨삭 선생님 구하면 연락줭
-
연대 고대 중에 6
캠퍼스 더 예쁘다고 생각하는 곳은 어디인가여 객관적으로@@
-
딴걸 사버림
-
호감옯붕이가 탈릅했어… 잘 지내라… 고대 붙길 바라…
-
귀엽고 사랑스러움
성관계요?
문제풀어보셈
화질 에바
다시올림요
32 ?
정공법 ㄱㄴ
ㄱㅁ
설명의 편의를 위해 e^(ax²+bx+c)=g(x)라 하겠음
f(x)는 (가)에 의해 (2, 0) 점대칭
(나)에 의해, 2|f'(x)|≤f'(8)-f'(0)
x에 0과 8을 대입하면 f'(0)≤0, f'(8)≥0
부호를 감안해 절댓값을 씌우면
2|f'(x)|≤|f'(0)|+|f'(8)|
따라서 |f'(0)|=|f'(8)|이며 이는 |f'(x)|의 최댓값임
f'(0)은 최솟값, f'(8)=f'(-4)는 최댓값임
g'(x)=(2ax+b)e^(ax²+bx+c)
g''(x)=(4a²x²+4abx+2a+b²)e^(ax²+bx+c)
f'(-4)가 f'(x)의 최댓값이므로
g'(-4)는 g'(x)의 극댓값, g''(-4)=0이며
g''(x)는 x=-4 부근에서 +→-로 부호가 바뀜
f(x)의 x=0에서의 좌미분계수가 g'(0)가 같으며
f'(0)이 존재하므로 f'(0)=g'(0)
따라서 g'(-4)+g'(0)=0
g'(x)는 x=-4에서'만' 최댓값을 갖고, 점대칭함수이므로 g'(-4)+g'(x)=0을 만족하는 x는 하나뿐임
이를 만족하는 x가 0이므로
따라서 g'(x)는 (-2, 0)에서 점대칭, -b/2a=-2
g''(-4)=0과 연립하면 a=-1/8, b=-1/2
f(0)=e^c, f'(0)=-e^c/2
f(2)=0이므로 f'(0)이 f'(x)의 최솟값임에 위배되지 않으면서 f(2)=0이려면 f(x)는 0~2에서 1차함수임
정적분값을 이용해 c를 구하면 c=2
따라서 c/ab=32
사진을 찍을 수 없고 패드나 노트처럼 필기가 용이하지도 않아서 부득이하게 글로 풀어썼음
정성추