Challenge Problem 1
게시글 주소: https://test.orbi.kr/00071227814
먼가 적당한 난이도의 멋잇는 문제 떠오르는게 없어서 많이 어려운 문제라도 일단 들고 왓습니다. 이것도 아주 멋잇는 문제임미다
파티에서, 어떤 참가자들은 서로 친구다. 친구란 항상 상호 대칭적 관계이다. 어떤 두 명을 택해도 서로 친구인 참가자들의 모임을 '조직'이라 부르자. (단, 두 명 미만의 참가자로 이루어진 모임도 조직으로 간주한다.) 같은 조직에 속하는 참가자들의 수를 그 조직의 '크기'라 부르자.
이 파티에서 가장 큰 조직의 크기가 짝수라고 한다. 전체 참가자들을 두 개의 구역으로 나누어 배치하되, 한 구역의 가장 큰 조직의 크기가 다른 구역의 가장 큰 조직의 크기와 같도록 배치할 수 있음을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미기과탐 가산 다잇던데,,
-
하나는 이름 실모단으로 지어서 수학만 시키고 하나는 담요단 해서 사탐만 시키는 중
-
조교 쉽지않네
-
못생기면 인생난이도가 너무높다는것
-
문제 읽는거조차 힘들어요 그저 갓가원
-
수학 담뇨단 전문으로 외모 빡세게 꾸며서
-
최상위권 맞춤 과외를 제공한다는건 양심 어디다 팔아먹은거임? 실존해서 말하는거임
-
이왜진
-
생윤 어렵나 0
흠냐리
-
누군가가 풀기에 따라 풀기 시작한 베르테르 77제 13
나도 풀이 올릴랭 4번 5번 6번 7번 심플 이즈 베스트. (그림 비율 제발 어케...
-
연고 국문과 12
올해 각 학교 문과에서 1~2등 찍는다는듯
-
저희 학교 시험이 조금 어려운 편이고 생1은 백호t 섬개완 듣고 있는데 이후에...
-
샤워해야되는데 4
물리나할까
-
새터,재수 질문 0
중앙대나 건국대 걸고 재수하려고 하는데 새터 필수일까요?
-
지금 스블 미적 살까말까 고민중인데
-
더 chill나 보도록 노력하겠습니다
-
작년 내신 생명 공부 했던 게 머리에 꽤 남아있어서 굳이 섬개완 말그 스개완으로...
-
안녕하세요. 합격자 후배님들! 저는 인하대 영어영문학과 22학번입니다. 인하대에...
-
홀로된 나의 슬픈 고독뿐
-
??
-
나 등장 2
현역 성대에서 재수 설경제로 업그레이드할 사람 등장
-
지방 축적 및 은닉죄, 뇌물김 수수죄, 허위체중 공개 및 유포 혐의로 체포합니다.
-
그러니깐 메가 따까리나 하고 있지
-
유베 사수생 6
오늘도 순공 0분..
-
실모 풀고 싶은데 다 2월 3월부터 나오는거 맞나요? 작년 실모 푸는거 도움 되나요?
-
some__day__fine 맞팔 ㄷㄱ
-
새터 썰 12
풀면 특정될거 같아서 사리기
-
어느정도인지 감이 안옴 숫자만보면 ㅈㄴ 적은데
-
공부하고 돈 벌면 머하노
-
매일 집으로 신문이 오는거에요??
-
레어가 팔렸어요 6
하하하하ㅏㅏ
-
내가 다녔던데는 다 썼음 소규모 학원도 아니고 주변 학교 애들 다 다니는 학원인데...
-
설렌다 으흐흐...
-
하는거 어찌 생각하시나요 둘다 노베입니다 정법은 너무 고인 것 같아서 고민되네요 2등급이었습니다
-
미적기하확통 0
현역 수시런데 학교 내신으로 미적기하확통 다함... 미적은 하는 중이고 기하는...
-
이거만 풀고 먹자 13
응
-
ㅇㅇ
-
내일 하겟습니다
-
아직 있으시나
-
ㅇㅂㄱ 4
-
타 커뮤에서 맨날 댓글로 키배 뜨던 놈 있는데 차단하니까 맘이 편함 뭐 알지도...
-
지 쓰레기통 못 찾겠다고 쓰레기 좀 대신 버려달라고 하더라...
-
잘햇다 응
-
김승리 tim 2
이거 작년에 한 거 보니까 기출 타이머 맞춰놓고 시간 안에 풀게 하던거던데 교재...
-
부모님이 보험 빵빵하게 넣어준 건 알고 있었는데 격리입원 100만원 독감진단비...
-
프사 변경했어요 3
회귀?함
-
질문받습니다 5
요즘 너무 행복함 티원 원딜명가 스매쉬 발굴에 담원의 재등장까지 이거지이거지
-
으응 하루에16시간씩 하면 고려대경영가능?
-
자허블에 더 부을거에요 밸런스 맞추기
ㅇ얼마정도어려워요? 정말멋있는문제보다 더?
넵..
가장 큰 그룹 반반 나눴을때 반보다 더 큰 그룹이 있다면 그 크기만큼으로 분할
없으면 이대로 종료
아 새로분할했을때 더 커질수가 있네 단순한 문제가 아니군......
고능아 총집합이네
서로 친구…?
가정부터가 틀렸네
12명이면 6명 6명
11명이면 4명 4명 3명
10명이면 4명 4명 2명
9명이면 4명 4명 1명
이런식으로 모든 경우에서 분할될 수 있다는걸 보여주는 문제인건가…?
사람들을 점으로 보고, 친구관계를 선으로 잇는다 했을 때.
어떤 점들만 쏙 빼서 얘네 사이에 선들만 봤을 때, 전부 다 선이 잇으면 그게 조직.
이런식으로 형성되는 가장 큰 (점이 많은) 조직의 점 개수가 짝수인게 조건.
점 전체를 두 그룹으로 나눠서, 두 그룹에서 가장 큰 조직의 점 수가 항상 같게 분할할 수 잇음을 (점 개수와, 선 배치에 상관 없이.) 보이는게 문제임뇨.
음…음…음…
머리 아프네
조직들을 어떻게 어떻게 잘쪼개면
예쁜그림이 나올거같은데
으… 탈주해도 되나…?
이거는 제가 올린 다른 문제들에 비해서도 꽤 압도적으로 어려운 문제임미다
진짜감도안오네 짝수라는걸 어떤 의미로 받아들여야할지부터모르겟음
이건 진짜 많이 어렵긴해요 ㅋㅋ