미적 이 정도면 난이도 어느정도임?
게시글 주소: https://test.orbi.kr/00071234738
김기현 파데 미적 3주하고 킥오프로 복습하는데 개념할 때는 개쉬워서 별거 없는 줄 알았는데 유형서 오니까 대가리 깨질 거 같네 평소에 머리 나쁘다고 생각한 적은 없었는데..
사람들말로 이정도 책이면 기초라는데 이 문제가 노베 개넘으로 풀리는 문제냐? 한 70프로 접근하고 그 뒤에는 못 풀겠다 요즘들어 깨닫는다 빡대가리라는걸
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이유도 부탁 ㅜㅜ
-
머리 크기에 비해 키가작다
-
너무 많아서 계산 포기
-
여기사 진짜 친구없는건 나밖에업구나...
-
오르비는 1
영어로 오르비
-
오르비가 죽었어 2
아니야 아직 따뜻해
-
애플워치 ㅈㄴ 갖고싶다 수영할때 끼면 ㅈㄴ 좋은데…
-
리세계 이거 구하는거 개귀찮아서 때려침
-
새르비감성이좋음 0
그래서 새벽에만 오르비함
-
웹툰 0
살인예정자 흥미진진한걸
-
배웠어요 불교대학답게 쟈한테 깨달음을 줬어요 건동홍 서연고 서성한 중경외시
-
풀커리 타는 거 어때욤
-
할머니댁가면 할게 그것밖에 없을것같아
-
0 3
45 957
-
잘자요 1
졸려..이젠진짜 자야겟어요 잘자요
-
컨관님 너무해..
-
계엄은 문화다! 0
계엄 조이고
-
너무절망적임. 너무길어..
-
정시러입니다 수학이 유독 약해서 이미지 선생님 세젤쉬 수1 완강 후 현재 세젤쉬...
-
오 메인 갔네 2
오랜만에 메인이라 설레네
-
졸릴때 이불덮고 자는거랑 걍 자야할시간이니까 억지로 자는거랑 기모찌함이 다름
-
구속 되고 말야
-
니파~⭐ 걔 맞음ㅋㅋ 팔로워좀 차면 시작한댕...
-
대학가자 5
ㅇ
-
왜 살아있을까요
-
곧 또 알바가네 3
ㄹㅇ쉬고싶다 이말이야 일 안하고살고싶다..
-
고대붙으면좋겠다 2
작년 예비돈거에 1.5배는 돌아야 붙을수있는데 서울대 빵꾸 개많이나서 돌앗으면 좋겠다
-
여기 왜 자꾸 4
글 하나 보고 뒤로가기하면 새로고침 돼서 맨위로 올라가나요 원래 이런 건가
-
뉴런 25 26 2
뉴런 25 교재 수1 수2 있는데 수1은 브랜뉴런 제외 거의 다 풀었고 수2는...
-
반수 거부감 다 사라짐 10
과탑 찍고 노대 가고 싶다
-
기안 장우 대호 성환 새로운 사람 말고는 넘기는 듯
-
보스 잡는건 어려워서 내실만 주구장창 하는중 넷플릭스보면서 모코코주우면 시간후딱감
-
저거 얼마 안하니 다시 구매해주실분....ㅈㅂ
-
플렉스 ㅇㅈ 6
이게 진짜 플렉스지 ㅇㅇ
-
오늘 하루를 돌이켜보니 입시에 찌들어있는 내가 너무 불쌍해 보임
-
시간 녹았네
-
부럽다
-
도박수 던졌다가 되면 도파민중독으로 죽을 인간인 것을 알아서..
-
시발
-
남자애들 저런 주제에 대해 관심 많지 않나.? 다른 남초에선 념글까지 갔는디.
-
요즘 바빠 3
오르비, 공부, 운동 3개바께 안하는데 나머지를 할 수가 없어 웹툰이 너무 밀려서...
-
간지 나네
-
이정도는 옯창아니죠...?
-
베아트리체는 말이야 우! 무한과 황금의 마녀야! 정말 대단한 마녀라서 뭐든지 다 할...
-
꼭 다른 색 눈은 특별한 능력을 가진 경우가 많거든요
-
그냥 새벽루틴 0
아 배고픈데 뭐 먹어야하나 근데 곧 자야하는데(1시) 라고할때 먹을걸(2시) 라고할때 먹을걸(3시)
-
오르비 그리웠어서 이틀 정도 새르비 하다보니 나잇값 못하는 거 같아서(맞음ㅜ)...
26번 정도
26 27 사이
ㅇㅇ
어려운 3점
학평에서는 저것보다 쉬운 4점 봤어요
27 or 29
기출에 비슷한거있지않나?
29번같은데;; 또나만어렵지
29급이긴한데 내가 어렵게 푼건가
개념 이후 단계에서 갑자기 어렵데 느끼신 건
아마 이 문제의 핵심이 급수 개념이라기보다 이차방정식의 실근에 있어서 그런 것 같아요!
이차방정식의 실근이요? 혹시 어떻게 푸셨는지 여쭤봐도 될까용
주어진 곡선의 방정식은 이차식이므로 이 곡선과 직선의 교점을 구하는 방정식은 2차방정식입니다.
따라서
어느 한 교점의 좌표가 주어졌을 때(A_n)
나머지 하나의 교점의 좌표를 구하는 것(A_n+1)
은
이차방정식의 어느 한 실근이 주어졌을 때
나머지 하나의 실근을 구하는 것
과 같고,
이는 이차방정식의 근과 계수와의 관계라는 개념을 끌고 왔을 때 가장 간결한 풀이를 낼 수 있게 해줍니다.
여기까지를 풀이의 전반부라고 합시다.
그러면 후반부는 선분의 길이를 n에 대한 식으로 나타내는 것이겠죠.
저의 의견:
1.
전반부의 결론을 내리기만 하면
후반부는 특별한 사고과정이 필요없다.
(두 점의 좌표가 주어졌을 때 선분의 길이를 작성하는 과정일 뿐이므로)
따라서 전반부를 쉽다고 인식한다면 이 문제가 쉽게 느껴질 것이고, 어렵다고 인식하면 이 문제가 어렵게 느껴질 것이다.
위 답글에서 보였다시피 전반부를 쉽게 해주는 것은 이차방정식의 구조를 인식하고 이차방정식의 근계관을 적용하는 것이다.
2.
심지어 후반부의 계산을 짧게 해주는 데에도 근계관을 이용할 수 있다.
두 점은 모두 곡선 y=x^2 위의 점이므로
두 점의 x좌표의 합과 차만 얻는다면
선분의 길이를 구하는 과정이 편해질 것이다.
곧, 풀이의 전반부는 물론 후반부까지
이차방정식의 실근을 다루는 경험이 다분하다면 쉽게 접근하고 작성할 수 있는 것이다.