[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://test.orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사수하는사람? 5
시작함?
-
이원준 "대한민국 국어교과서가 틀린겁니다." goat
-
많관부
-
님들 하이 10
느에
-
오랜만에 질받 23
일병 개짬찌 상근/휴가 끝나고 동대로 곧 갈예정 건대 낮문 국어 원툴 군수생...
-
재수하는사람? 8
?
-
많이 빡센 편임? 국어수학이 부실한 편이라 좀 달려야하는데
-
학생이 교과서 보는건 아무리 생각해도 말이 안되는거같은데 강사나 교사, 출제진이...
-
그런 세상이 와버린거냐..
-
일단 매일 아침 강기분을 4시간동안듣거나 요일에따라 영어모의고사를 한회식 풀고 오답...
-
막 25살이상이고 그러면 좀 당황스러울듯…
-
63-76-91로 올렸는데 고정1 하고싶어요
-
근데 고3 딸어케침 17
진짜궁금해서그럼 공스타하는 몇몇사람들도 하루 빈틈없이 꽉 채워서 사는 사람들 많던데...
-
성시경이 훨 나음 겨울에 듣는 성시경 목소리는 사랑이야!
-
예비 고3 원래 공부 안하다가 고2 기말 쯤 부터 수상수하 부터 꾸준히해서 이번에...
-
이제 다 갓냐 12
나도 가야겟다
-
국어 이제 기출 보는게 의미가 있음..?기출로 대비안되는난이도인데? 리트의시대다...
-
일단 진짜 그때 수고 많으셨어요 진짜...수고 많으셨어요 왜 그러나면 지금 제가...
-
시대기출 1
마플이랑 시대 기출이랑 뭐가 더 나으신가요?
-
ㄹㅇ ㅠㅠ
-
쏘리암어밷보이 0
유얼굿걸
-
내신개복잡하네 0
일단 1학년1학기 입력했는데 4.28나옴 어디까지내려가나 보자구
-
국영수 약해서 방학동안 국영수만 공부하고있는데, 사탐도 시작해야할까 고민됩니다 사문...
-
응애 10
다 자니
-
시경외시외경경시외경외시외시경외경시 오르비언의 모임 정기 모임: 매월 첫번째 금요일...
-
어제꾼꿈 2
재수해서 93 92 1 50 50받는 꿈 껏음.. 예지몽인가 이거
-
항공권, 숙소, 교통(지하철) 등 팁 암거나 던져주실 분 있으실까여...?
-
골치 아프네
-
여자만받아요 뭐요
-
그래야 불안하지 않아요 올해 무조건 될거라고 생각하는편
-
근데 제한 걸려있어서 상방 하방이 보장 안되는 느낌 입결은 높은 편인데 꼬리가 긴편임
-
뜨뜨 내일 군대감.. 11
ㄷㄷ
-
현역연경 무휴반설경 ????????님보다 사문백분위 3높음 물론못떠나는저의압도적패배,
-
투표해주세요(고민) 10
전 검정고시 출신이고 목표는 sky 물리학과 또는 공대입니다. 근데...
-
이거 원점수 95맞나요?
-
나친구가없어 15
ㄹㅇ버려진듯.....졸업식몇신지도모름진짜
-
내일 하겠습니다
-
부모님 심부름으로 마트에갔었음 근데 계란 한판을 샀는데 원래 30개가있어야하잖음...
-
술먹는거?
-
강제서렌 머야 1
아오 친구 잘못 골랏어
-
2.5불렀는데 의대생인데 너무낮은거아니냐고 물어보고 일단 1달해보고 과외비 올리든가...
-
매일 공통으로 아침 8시까지 관리형독서실 입실 국어 1시간 30분 강은양 문학...
-
국일만 1
예비 고2 정시파이터입니다. 고3 모고 기준으로 3등급이 뜨는데 국일만 기본편으로...
-
나모르게 손절당한듯 ㅠㅠ 이제 오르비밖에 없다
-
시대가면뭔가있나 1
Myfriend시대가고신봉하는중임
-
레츠고
-
확통=통통이 1
확통은 신유형 같은거 안나오죠?
-
노베 9수생 연세대학교 합격까지 d-298
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?
기하황 ㄱㅁㅁ
님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!
3
문제 좋네요
여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요