수1 도형 특강
게시글 주소: https://test.orbi.kr/00071482344
나오는 도형은 삼각형과 원 두 가집니다. (짜피 다각형도 삼각형 합친거)
대충 살펴보고 바로 문제로 가겟슴미다.
1. 삼각형
완전히 결정된 삼각형인지 아닌지를 빠르게 판단하는게 중요함미다, 삼각형의 결정 조건을 보면,
SAS, ASA, SSS 등의 조건들을 알고 있으면 그 삼각형을 결정되었다고 할 수 있겠죠.
다만, 저것보다 문제 풀 때 중요한 사실은 닮음조건 + 길이 하나 면 삼각형이 결정된다는거죠. (길이가 크기를 결정)
즉 AA, SAS, SSS 등의 닮음 조건이 있을 때 삼각형의 길이 하나만 알면 완전히 아는 삼각형이 된다는 겁니다.
2. 원
사인법칙을 생각하면 됩니다.
a/SinA = 2R. 즉, 대응변과, 대응각, 반지름 3개 중 2개를 알면 하나를 알 수 잇다는 것만 기억하면 됩니다.
3. 문제 보기 흐흐
이렇게 쓴거 보고 이해가 됏으면 도형이 문제가 안 되겟죠. 문제로 살펴봅시다.
아까 어떤 오르비언 분이 올린 문젠데 이 문제로 같이 확인해보죠.
우선, 우리가 아는걸 정리해봅시다.
1. 반지름, 2. 각 BAD, 3. AB/DA, 4. BE/ED.
Step1) 1번과 2번을 알고 잇으니, Sin법칙을 통해 BD의 길이를 알아낼 수 있다는걸 바로 찾아야합니다.
Step2) Step1을 거치고 난 뒤 보면 삼각형 BAD는 이제 삼각형이 결정되었음을 알 수 있죠.
왜냐면, 3번 조건 AB/DA, 2번 조건 각 BAD를 알고 잇으니
이 삼각형은 SAS 닮음 조건을 만족합니다.
ㅇ여기서 Step1을 통해 BD의 길이를 알아냈으니 삼각형이 결정되었죠.
따라서 Cos제2법칙을 쓰면, AB, AD의 길이를 알 수 있을 겁니다. (삼각형 BAD에 대한 모든 정보를 알 수 있는 상태니 당연히 넓이도 알 수 있음)
이 아래서부턴 도형뿐만 아니라 모든 수학 문제에 해당하는 내용임미다.
Step3) 우리는 이제 BCD라는 삼각형만 알아내면 문제가 풀림을 알 수 있습니다.
우리가 아는걸 정리해보면, BD의 길이 각 DCB의 크기를 알고 있죠.
즉, 삼각형이 결정되기 위해선, (BC/CD)의 비율을 알면 될껍니다.
여기서 막히면 안 되고 당연히 이제 안 쓴 조건을 확인해 봐야할 때입니다.
확인해보면 BE/ED를 안 썼다는걸 알 수 있죠.
그럼 BE/ED를 통해 BC/CD를 알아내야한다는 건데 이 과정은 다음과 같이 진행하면 됩니다.
BE/ED=|BEA|/|AED|=AB*sin(alpha)/AC*sin(beta)=(AB/AD)(BC/CD) (alpha, beta는 각각 각 BAE, 각 EAD.)
그럼 이 과정을 어떻게 생각해내냐 라는 질문이 생길껍니다.
I) 피지컬
사실 위 과정이 생각못할 만한 정도는 아닙니다. 충분한 피지컬이 잇다면 그때 그때 뚫어내면 됩니다.
다만 그만한 피지컬을 키우는건 쉬운 일은 아니겠죠.
II) 풀엇던 문제 분석
하지만 피지컬을 키우지 못했더라도 상관 없습니다.
왜냐면 우리는 이미 이 문제를 봤기 때문이죠.
즉, 저 상황에서 BE/ED, BA/AD, BC/CD 3가지 중 2가지를 알면 나머지 하나를 알 수 있다.
또는, BE/ED를 넓이의 비율로 바꿔낼 수 있다. 정도만 확실히 기억해놓으면 다음에 같은 상황에 빠르게 풀어낼 수 있는겁니다.
또한 이거를 공식으로 창조해내서 나의 도구로 만들어놓을 수도 있겠죠.
마지막은 역시나 cos제2법칙으로 길이들을 알아내면 됩니다.
4. Skill?
i) BE/ED=(BA/AD)*(BC/CD)
위에 Step3를 공식으로 바꿔내면 이런 공식이 됩니다. 외우기도 쉬운 공식이니 쓸데가 있을 겁니다.
사실 저번에 이 공식을 글로 써서 올렷는데, 반응이 차갑더군요 ㅇㅅㅇ;;.. 쓸데 잇어보인다니깐....
ii) 브라마굽타 공식.
원에 내접하는 사각형의 변의 길이가 a,b,c,d일 때 다음 공식이 성립한다
(사각형의 넓이)=sqrt((s-a)(s-b)(s-c)(s-d)) (s=(a+b+c+d)/2).
이걸 알면, Step3이 끝났을 때 a,b,c,d들을 알아내고 삼각형으로 쪼갤 필요 없이, 넓이를 구해낼 수 있겠죠.
공식이 복잡해보이지만 막상 써보면 계산이 오래 걸리지 않고, 도구가 많아서 나쁠건 없습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내용을 입력하세요.
-
하아..
-
더 모다겟는데..
-
26수능 27수능 응시할거면 군대 미루는 게 낫겠죠? 고민되네요 ㅜㅜ
-
멀티 장인 1
듀랭+오르비
-
나의 본처가 되도록
-
오르비 꿀팁 4
뭔가 재미난데 곧 지워질 글 같으면 댓글을 달고 진짜 지워졌을 때 사물함을 통해 들어가보세요
-
부탁드립니다 3
.
-
그래도 안지영이면 극복가능.
-
ㅂㅂ 4
내일은 동대가 했음 좋겠네요 이젠~그랫으면 좋겠네~
-
이런국가를왜좋아하는거지 가까이서보지않기에좋아하는건가
-
열반님 -> 다람쥐님 -> 나머지
-
근데 킬뎃만 보면 18
난 괜찮게 한 거 같아 역시 나야
-
근데 그래프가 편하긴한듯 그래프가 좀더 직관적임
-
수1수2도 있었네요 왜 이제 알았지
-
생각해보니까 0
할아버지랑 아버지 큰아버지 사촌형들 그리고 친형이랑 나는 같은 Y염색체를 가지고 있네 신기
-
예비 한바퀴 돌아도 추합안될 번호대지만 궁금해요 한교 한문 성대 성균
-
다 먼가 매칭이 되네 ㅋㅋ
-
님도 빨리 내 닉 알아내라.다람쥐님 닉 ㄹㅇ 그 다람쥐가 지엇을만한 닉이네
-
푸앙대 전과 0
문과에서 문과로 전과하려고 해도 전과하려는 과 전공기초 들어놔야 하나요?? 그리고...
-
가끔 여자랑 연락할 때 힘들다고 하는 남자들이 있는데 4
여자랑 연락이 잘 안되는 건 니가 연락에 능숙허지 않아서가 아니라 여자가 너랑...
-
수정된 마지막 문단 제시문 일부
-
요네 1
ㄱ ㅡ다 음은 야스오
-
지역차별 1
안생길수가 있나 이거 어떠한 지역을 차별하는게 아니라 그냥 차별된 지역인듯 ㄹㅇ
-
흐흐흐흐 2
-
진짜 이 캐릭터 띄우고 비대면 과외해주나
-
점공 계산기 어느게 젤 정확할까요?? 셈퍼 99퍼로 설정하고 미니멈 보라고 하던데...
-
한국인 친구도 못만드는데 외국인 친구를 어케만드냐는 나쁜말은 ㄴㄴ
-
내 지인이 그럼 재수때 서강대 공대 걸까말까 고민하다 안 걸고 삼수했는데 건국대...
-
마계인천썰 ㅇㅇ 2
난 인천에서 태어나서 인천에서만 살았는데 예전에는 마계인천 카마인천 같은 별명 왜...
-
하 ㅅㅂ 진짜 대성패스 33만원 이걸 사야해 말아야해 ?? 6
존나 고민되내 어케 가격이 두배가량 오르지ㅜ 돈 좆도없는데
-
=지금 분명졸린데 아샷추 2리터 먹었더니 잠에못들어요
-
고한 조발기원 2
굽신굽신
-
에휴이
-
막상 댓글이나 글 달린건 없을때가 많음 왜그러지
-
이해는 된다만 너무 이기적인건 아닌지
-
오늘 하루 1
행복하길..
-
대학 어디다니니? -아 저 그냥 지방대 다녀요 비틱질 못참겠다
-
주의사항이나 팁같은거 있나요
-
ㄷㄷ
-
에휴
-
극한상쇄!!!! 3
크아악
-
하지만 n수생은 말 안 듣지 반수 슈우우우우웃ㅋㅋㅋㅋㅋ
-
금요일날 나름 중요한(?) 약속이 하나 있는데 (공적인 자리는 아닌데 아무튼)...
-
새터가 그럴까봐 무서움 진짜 친한애들이랑 술마시면서 노는거는 억지로 친한 분위기가...
-
레어 하나만 사고 싶어요 1/31까지 갚겠습니다
와 진짜 칼럼글이네
7ㅐ추 누름
와
이걸로 도형정복하기..
으흐흐
일단 개추부터
저 3번문제 드릴드문제랑 똑같은데
아 살짝다르네
교육청이에요
고2 29
저문제 올리신분 게시글 댓글 ㄱㄱ
브라마굽타 검색해보니 이 사람이 0 발견한 사람이구나