[자작문제] 수1 삼각함수 문항
게시글 주소: https://test.orbi.kr/00071483869
객관식이라 답에 뭔갈 걸긴 좀 그렇고
출제자의 의도대로 풀어서 풀이를 올려주시는 분께는 5000덕을 드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대학 어디다니니? -아 저 그냥 지방대 다녀요 비틱질 못참겠다
-
주의사항이나 팁같은거 있나요
-
ㄷㄷ
-
에휴
-
극한상쇄!!!! 3
크아악
-
하지만 n수생은 말 안 듣지 반수 슈우우우우웃ㅋㅋㅋㅋㅋ
-
금요일날 나름 중요한(?) 약속이 하나 있는데 (공적인 자리는 아닌데 아무튼)...
-
새터가 그럴까봐 무서움 진짜 친한애들이랑 술마시면서 노는거는 억지로 친한 분위기가...
-
레어 하나만 사고 싶어요 1/31까지 갚겠습니다
-
인하대 자전 3
150명뽑는데 예비30 되겠죠?
-
친척 A : 사수씩이나 해서 원광대에 가니? 에휴.. 그래서.. 과는 어디니?...
-
칠한사람 특 0
프로필뮤직이 사라진모든것들에게 임
-
프로그램 처음써봐서 잘 모르겔음 https://link.chess.com/play/0p9bVt
-
ceoi 인수인계할때 communication electronic operating...
-
그냥 안잘래.
-
원기옥 오래 모았다
-
레어 가격을 상향 평준화 하면 레어가 다 팔릴까요?
-
Fm 일기나 올려볼까 17
근데 난 자체로 로스터 수정해서 쓰는데
-
몸이 예전같지 않음 게임 오랫동안 못하겠네 목아프고 눈 건조하고
-
공부에 방해되서; 그래도 님들 덕에 많이 웃고 갑니다. 3월에 봬요.
-
심지어 트위터하다가 걸림 ㅅㅂㅋㅋㅋㅋㅋㅋ 어케됐으려나 모르겠네 그때 게이게이 걸리기...
-
갑자기 든 생각인데 16
복마어주자는 캔버스 없이 허공에 그림을 그리는 거잖아 이거 엉덩이로 이름쓰기 아님?
-
엄청난 집중력 ㄷㄷ 공부하면 고수가 될 것임
-
아 어깨 또 개아퍼 14
옵치하고 롤의 폐해다
-
진짜 자야지 2
레어 구매 소리가 나도 더 이상 구매하기를 누르지 않을거에요
-
게이하니깐 떠오른건데 13
예전에 남고다닐때 카드결제라는 놀이가 유행햇음 카드로 슥하고 엉덩이를 긁는거임 그럼...
-
패턴바꾸는건 걍 포기하고 뭐좀 먹고 코딩이나 하자
-
레이와 7(2025)년 시행 대학입학공통테스트 수학Ⅰ·수학A 번역 11
지난 1월 20일 일요일 일본의 수능이라고 할 수 있는 [대학입학공통테스트]가...
-
오랜만이다... 오르비도 오랜만이었다... 다들 잘자요
-
디씨처럼 물고뜯으려하지않고 다들 으쌰으쌰하는 분위기니까 여기서 동기부여받고 상처는...
-
ㄹㅇ 눈아래로 깔고 다녀야됨?
-
영어에 비해 물리를 더 잘하긴 함
-
수열 특강 준비중 12
행동강령을 정리하고 있음
-
떠오르는 추억이 잇나요
-
근데 난 게이 좋아함 12
뻥임
-
대학병원이 0
더 소송같은게 많이 들어오나?
-
학원에 친구 한 명도 없어도 오르비언들 있어서 외롭지 않아 내가 이래서 오르비를 못 끊어
-
이젠 나이 언급만 나오면 움찔거림
-
야메추좀
-
게이가왜이리많노
-
왜 안 잡힘 0
오늘 먼 날임
-
음음
-
보추 x 여자 하죠
-
아무리 없어도 한 명은 잇는거 같던데
-
손잡고 그런거
-
저는 없음
-
나 오늘 한 거까지 합쳐도 지금까지 15판 이내로 함
펜 꺼내기 귀차는데, 눈으로 안 풀려 ㅜㅜ
막 그닥 복잡하진 않아요..!
13번이라기엔 너무 어려운데요ㅠㅠ 이상한 곳만 보고있는 건가
앗 좀 어려운가요..ㅠ 발상적인 부분이 조금 있긴 합니다
여기까지만 보고 사인 같다 해석을 못하겠네요
내대각의 성질을 이용해서 각을 열심히 돌리다 보면 재밌는 조건이 찾아집니다! 풀이는 다른 게시글에 올려두겠습니다 참고해보세용
간간히 봐서 풀긴 풀엇는데 개 지랄로 품 ㅜㅜ
ㅋㅋㅋㅋㅋㅎ 어떻게 푸셨나요
CE=CT인 선분 BC위에 점을 T, 원의 중심을 O, PO와 AE의 교점을 R이라 하면,
O,R,A,D는 공원점이고, 조건에 의해 DP//AF이다. (AD와 PF가 평행하지 않으므로)
각 ORE = 각 EDA (원주각) = 각 PDA - ㅠ/2 = 각 DPF - ㅠ/2 = 각 APC.
즉, CP=CR이고 ET//PR⊥DE이므로, ET는 접선이다.
접현각에 의해 각 TEP는 45도이다.
즉, 삼각형 CEP를 보면, CP를 1:2로 내분하는 점 T에 대해.
각 TEP=45도이고, CE=CT이고, PE=8sqrt(2)이다. (Sin법칙.)
따라서 삼각형 CEP가 결정되엇다. (코사인 3번인가 염병하면 길이 다 나온다.)
원주각 아니고 내대각이네 저기
이게 이렇게도 풀리는군요..ㄷㄷ T 잡을 생각을 어떻게 하셨는지 궁금한데 혹시 여쭤봐도 될까요?
각 열심히 돌리다가 보엿습니다 ㅋㅋ.. 거의 직관적으로 본 거 같아서 저 점을 잡을 생각을 어케 햇는지를 잘 모르겠네요.
원래 풀이가 궁금해요
ㅋㅋㅋㅋㅋㅎ 넵 게시글로 올리겠습니다
그림도 대강 그려올게요
이거임뇨, 너무 ㅈ같이 풀어서 보여주기 부끄러울 정도네요 ㅇㅅㅇ..