[칼럼] 삼.사차함수 비율관계 안외우고 푸는법!!
게시글 주소: https://test.orbi.kr/00071736822
안녕하세용
제가 공부법 올렸었는데 다들 안믿길래... 걍 스킬이나 올릴게여..ㅋㅋ
여러분 비율관계 엄청 많잖아요? 다른거 외울것도 많은데 언제 이걸 다 외워요
물론 익숙해지면 자동으로 나오는거지만 다들 한번씩 문제 풀 때 어 이거 공식 뭐였지?한적 있으시죠??(나만 그런가..)
쨋든 비율관계는 알면 편하지만 외우기에는 용량이 참 아깝습니다
그래서 한 원리를 소개해드리고자 하는데요, 바로 대치 어둠의 스킬이라 알려진 거리곱입니다!!
거리곱은 크게 3가지로 나눠서 볼 수 있는데, 여기서는 2가지만 소개해드릴게요
(나머지 하나 넓이 거리곱은 나중에 기회 되면;;)
1.
먼저, 일반 거리곱입니다
삼차함수, 사차함수 상관 없고 허근만 안가지면 되요!! 중근도 가능!
다음과 같이 다항함수가 있을 때
함숫값을 찾으려면 기준선을 기준으로(꼭 x축 아니어도 됩니다. 실근 나오게끔 축을 설정하셔도 돼요)
최고차항과 근들과의 거리의 곱을 구하면 됩니다
주의해야할건 중근이면 2번, 3중근이면 3번 곱해주셔야 해요!!
이런 방식을 쓰면 삼차함수에서 극대-극소를 공식 없이 빠르게 구할수 있답니다ㅇㅅㅇ
삼중근 갖는 사차함수에서도 공식 없이 거리 빠르게 구하는거 ㄱㄴ이고요 꼭 그런거 아니더라도 원하는 함숫값을 함수식 없이 그래프만 그리면 나올 수 있게 연습해두는게 좋아여
2.
두번째로, 기울기 거리곱입니다
이건 두가지 버전이 있는데, 첫번째는 근들 중 한 지점에서의 기울기, 두번째는 근이 밝혀지지 않았을 때 임의의
점에서의 기울기에요
첫번째로, 근들 중 한 점에서의 기울기입니다.
근데 이건 일반 거리곱과 메커니즘이 같아요 그래서 1번이 익숙하다면 이것도 문제 없을겁니다
마찬가지로 최고차항의 계수에 그 점을 제외한 나머지 근들까지의 거리를 곱해주면 그 점에서의 기울기가 나와요
이건 1번보단 쓸 일이 많이는 없지만 가끔씩 나와주니 익혀두는 것을 권장합니다여기서 c점에서 기울기를 구하려면, 최고차항 k 곱하기 m곱하기 l+m하시면 되는거죠
두번째로 위에 썼던 기울기 거리곱보단 많이 쓰게 될 일반적인 상황에서 기울기 구하기입니다
여기선, 근이 뭔지 몰라도 극대, 극소인 지점만 알아도 미분계수를 구할 수 있는데요, 주의할 점은 아까와 달리
최고차항을 곱할 때 그냥 곱하는게 아니라 미분 하고 곱해야한다는겁니다
즉, ax^n이면 한번 미분한 na^(n-1)에서의 계수인 na를 곱해야 하는겁니다. 문자로 써서 복잡한거지 간단해요
예를 들어 4x^4이면 16을, -2x^3이면 -6을 곱하면 되는거죠
이걸 편의상 미분후 최고차항 계수 K라 하겠습니다.
그럼 한 지점에서의 미분계수는 K에 극대, 극소인 점들과 구할 지점의 x좌표의 거리들을 곱하면 나옵니다.여기서 r점에서의 미분계수는 3anm이 되는거죠
마무리
사실 왠만한 칼럼글에는 제 자작 문제를 넣으려고 했으나, 거리곱 스킬의 특성 상 예제를 넣기가 그래서 안넣었습니다
거리곱이라는게 문제풀이의 발상에 관한것, 풀이의 방향이 바뀌는 그런거가 아니라 단순히 특정 상황에서
계산을 그래프에서 바로 빠르게 해주는 촉매 역할의 스킬이라서 예제는 따로 넣지 않을게요
+이 거리곱은 제목에서도 말했듯이 삼.사차함수 비례관계를 외우지 않아도 풀리는, 비례관계의 상위버전이라
할 수 있습니다.. 연습하시면 비례관계 안쓰고 이거만 쓸 정도로 유익한 계산 스킬이에요
++다음 칼럼글은 아마 '역함수 미분법 일관되게 풀기'가 되겠습니다
아닐수도 있고
아 까먹었다 이거 부호는 그래프 보면 딱 봐도 +인지 -인지 알테니까 계수 -여도 걍 절댓값 붙여서 값만 계산하고 부호는 나중에 판단하는게 편해요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금까지 깨있어버림...
-
막차 13
7
-
뉴런 1
다른 실전개념강의랑 다른점이 뭔가요? 왜 실전개념의 대명사일까요
-
반대로 만점 받으면 진짜로 바로 옯밍아웃함
-
텝스401 0
ㅁㅌㅊ?
-
여장 남장 4
드립이죠?? 아니면 진짜 좀 혼란스러운데??
-
존못아조시ㅇㅈ 13
폰 보면서 찍으니까 눈이 너무 깔아지는••
-
길다가 마주치면 아는사람인줄 알고 인사할것같음
-
홍대 기계 추합 3
64명 정원 예비 43번인데 몇차 추합때 될지 궁예좀~~ 왠지 올해 많이 안돌거 같다~ㅜ
-
지금부터
-
존예 의대녀 봄 세상 왜 이렇게 불공평하냐
-
삼겹살 웅
-
나만 이산한가
-
추합 조발 0
추합 조발하게 되면 1차만 조발인가요 아니면234차도 저녁에 조발할까요? 그리고...
-
글만 보이고 글 사진은 안 보임
-
가난이 군대같이 오리라
-
얼버잠 3
ㅇㅈ 다보고 난 ㅇㅈ안하고 자야겠다 ㅎㅎ
-
오늘 화력 보면 하면 안되겠네 무셔
-
왤케 무한 로딩임?
-
사진을 올려줘 나 빨리들어갔는데 안보이잖아!!!!!
-
프사던 댓글 사진이던 게시글 사진이던
-
인증끝남? 1
더줘
-
메인은 가보고 싶다 ㅇㅈ 화력은 정말 대단하구나
-
얼굴 학력보다 일당 하체가 먼저 들어오는데
-
여장 만능론 5
남자 사귀고 싶음>>>여장하면 댐 오랜만에 여자 만나고 싶음>> 화장 안 하면 댐
-
끝났냐? 0
잔다
-
하 진짜
-
이거 진짠가요 8
인스타 릴스에 뜨는데 진짠가
-
인증다놓쳣네 4
나도이제오르비를 잘 안하게 되는구나
-
내가 팔로우 한사람 전부 해당.
-
휴릅하고와야지 1
3분정도만..
-
반가워 2
나 돌아왔어
-
휴릅합니다 5
조금만 더 있으면 진짜 뛰어내릴듯
-
집안,외모,학벌 안봅니다 밝은 성격이고 민주당 지지자만 아니면 됩니다
-
평소처럼 여목이나 내자
-
언매 유기한지 오래돠서 언매도 해야 하고 수학 문제 50문제 ㅣ남앗고 인강도 이어...
-
한양대 붙을거같은데
-
ㅇㅈ 24
여장
-
그리고 수능은 강민철입니다.
-
옮스타가 뭐임? 3
인스타 비슷한거임?
-
나이는 먹고 대학 못가고 계속 수능공부하니까 ㅈㄴ 한심한데 열심히 안함… 진짜 왜...
-
내 수학력을 엔제로 늘리고 방출할것 7월달부턴 실모단간다
-
ㄹㅇ
-
오르비는 여전해 0
역시 인증메타
-
좋아요 30개는 ㄷㄷㄷ
-
죄다 대충 찍은 기카임
-
이러면 오냐?
-
체스하실분 25
맨날 하던 사람들 다 자러간거 같긴 한데
-
어떰? 12
첫번째 댓글의 주인공이 되어보세요.