미1 자작문제 하나 투척~
게시글 주소: https://test.orbi.kr/0007898569
흔한유형 이제 개학하니 자작문제도 못만들것군..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국민대 건축학과 좋다는 말 꽤 있길래 근데 광운이 좋다고 하는 거 같기도 하고,,...
-
도와주세요)원서 접수에 가나다 전형 기간은 뭔가요? 3
원서 접수일이랑 합격자 발표 사이에 가나다 전형 기간은 뭔가요? 그 기간에 해외...
-
사탐이 쉽긴함뇨 1
3모 20 5모 50 수능 48
-
자막 이용, 자막 추출 안됨 자막 있으면 시각화로 학습하는데 도움됨 자막 추출 되면...
-
새 거 상태에서 양도할게요 김진영 서브 필기노트 등등 나름 고퀄템들 많아요 구매...
-
하진짜시발
-
면접 대비용으로 보고 있는데 저때도 의사 파업하고 장난 아니였네 확실히 의료...
-
물리1 지구1 24 36 수능때 42 42 ㅋㅋㅋ
-
지금까지 다른학교 준비하느라 준비 못했는데 지금부터라도.. 어떻게할수잇나요?ㅠㅠ...
-
질문 드립니다 9
네... 많은참여 부탁드립니다
-
나도 이미지 써줌 33
맨날 내가 써달라고만 한거같아서 ㄲ
-
기념으로 여캐일러투척
-
친구들 보니까 뭐 신청해서 선착순 50명 요리해준다던데 ㄹㅇ뭐하는 아저씨임뇨..
-
제아봉침술쓰면 어캐이김뇨
-
저는 국수탐 합쳐서 5개 틀렸고요, 네 영어는 묻지 마시고요
-
힙찔핑
-
점수가 애매해서 둘중에 하나로 방향 정해야할듯요
-
학식머그러감뇨 7
빠빠이
-
답도 다 맞았다는 가정하에.. 합격자 평균점수 보면 80% 정도만 맞춰도 그냥 붙는...
-
캬 이거 재수하면 6개로 줄어드나
-
그니까 너무 쫄 필요없음
-
정상인데 인스타 중독안 남자들은 먼가 뒤가 구렸던 적이 많았던 거 같은데 나만...
-
애니프사단은 실제로 보면 잘생기고 사회성 많고 젠틀하고 시사에 관심 많고 2d...
-
요즘 인스타나 유튜브에 입시 관련해서 ㅈㄴ 킹받는 글이랑 영상 왤케 많냐 3
뭐 대충 뇌피셜 or 아님 말고 식으로 이상한 정보 던지고 수험생들한테 욕 박힐까봐...
-
학종 비율 4
서류 최고 700, 최저 600 면접 최고 300, 최저 270 하 뭐지..
-
씨발 8
군대갔다와서 바이크산다
-
혹시 올해보신분들있나 ㅇㅏ직결과안나와서 모르시려나 과탐진짜 엄청고였던데...화1...
-
경제>>경영 8
경영 허~~~접^^
-
시험장 가는 길에 차에서 어플로 기출 한두바퀴 돌리면 2종 정도는 1트에 합격 가능...
-
근데진짜괜찮긴함
-
실시간 으로 추가하고 싶은데 아직 새로운게 없네요
-
연고대 낮은과 죽어도 안될까요? ㅠ ㅠ 처음이라 잘 모르겟어서,,, 대학 라인...
-
진짜 너무 스트레스받고 힘듦 진짜...어디 놀러간다하면 그친구는 어디대학이냐고...
-
ㄹㅈㄷ 얼버기 2
매일 3-4시에 일어나다가 오늘 1시에 일어남 ㄷㄷ;;
-
그래서다들망함뇨 6평 9평 사탐 백분8n소유자..그게바로 나야
-
안녕하세요, 삼수생입니다. N수해서 성적 변화 없는 케이스들이 많고 수능 중독...
-
이번에는 꼭 붙는다
-
정답자 천덕 물리러드립 아닙니다
-
얼벅이 등장 2
흐흐흐
-
회기탈출하면 3
경뱃달고 경평글 싸야지 흐흐
-
자세한 건 모르고 대충 보니 여당 대가리는 탄핵빔 맞고있고 야당 대가리는 징역빔...
-
이미지 적어드립니다 29
심심해서 달아만 주신다면 정성스럽게 적어보겠습니다...!
-
요즘 반도체학과가 입결 탑급이고 여러 학교에서 많이 생기는 중인데 졸업할쯤 돼서도...
-
존나쳐웃긴데
-
그어살 봐볼까 2
안보긴했는데, 지루하다는 평이 꽤 있어서 고민중
-
게시글 모아보기 프사 라인업 봐라 ㅋㅋ 십덕이 세상을 지배한다
-
신설학과 예측 0
텔그나 고속에서 신설학과는 보통 어떤 걸로 예측하나요?
ㅇ?? 착한사람한테만 보이는건가요
너무빨리오심 ㅋ
아 보이네요
보이는뎅...
전 현역떄 학기중에도 만들었는뎅 ㅋㅋㅋ
애들한테 풀리는거 꿀잼
문과라 풀줄아는애들이 엄슴 ㅠㅠ
헉 손글씨!
악필자비..
푸신분 없으심??
f(4)면 그냥 위에 f(x)식에 대입하면 되는거 아닌가요? 문제가 이상한건 제가 이상한건지..
주어진조건 들로 미지수 a,b 찾는게 불가능하고
애초에 의도가 새로운 함수만든 다음에 답구하는거라 f (x)는 몰라도되여
아 a랑 b군요 ㅋㅋㅋ a를 9로 보고 b를 6으로봐서 뭐지.. 햇네요 ㅋㅋㅋ
f(x)-g(x)를 새로운 함수로 만드는것 같은데 (나)조건에 의해서 g(x)가 2차식 이하니까 f(x)-g(x)가 4차식이므로 서로다른 세실근이 등차수열인것을 이용 하기가 까다롭네요..네실근이면 참 좋을텐데..그냥 근과 계수관계 쓰기도 애매모호하고.. 으아.. 밥먹고해야지
거의다 푸셨네요 ㅎ
g(x) 2차이하 함수 f(1)=g(1) f'(1)=g'(1) 인것과 등차수열 조건 이용하면 f(x)-g(x)가 x=1에서 접하면서 양 옆이 대칭인꼴이 나올텐데 여기까지 맞아요? 이게 맞는 의도라면 문제가 조금 이상해서요
양옆대칭은 아니구여 딱히 함수로 그리기보단 방정식으로 생각해달라는 의미에서 (방정식 f (x)=g (x) ) 라고 했어요
f(x)-g(x)가 대칭꼴이 아니면 어떻게 등차수열일 수 있죠..?
아 알 것 같네여 근데 식이 안 복잡할지..
답 15인가요 알고보니 깔끔하네요.. 근데 f(x)는 x네제곱하고 세제곱계수까지만 줘도 될것 같네요 원래 주실때 복잡하게 a b 주셔서 뭐 있나 했더니 쓸 일이 없네요..
네 그것도 일종의 case 분류. 좌우대칭꼴이면 근과계수의 관계 만족못하고 1에서 중근이라 1+d , 1+2d로 놓으면 근과계수로 풀려여 ab는 그냥 3,4차만 주면 너무 티날까봐 ㅋㅋ
그래도 뒤에 부분은 깔끔하게 주는게 나을것 같아요~