미적분1 자작문제
게시글 주소: https://test.orbi.kr/0008207957
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잘되면 좋겠다
-
잠을 포기하고 연계공뷰나 할까요 아니면 눈이라도 감고 4시간을 보낼까요
-
솔직히 10대한텐 인생의 전부 맞지 ㄹㅇ ㅋㅋ 이거때매 초등학교부터 교육받은건디...
-
ㄱㄱ
-
진짜들의 시간이 왔다
-
내가 수능을 4년전에 보고 입시를 끝낸 후 정말 간혹가다 수능 생각나면 간간히...
-
강민철t 풀커리 들어가기전에 나비효과 학습중인데 나비효과 문학은 좋다는 말이 많은데...
-
뭐만 하면 아동학대 신고 조심해야되고 교사는 그 부조리를 견뎌야 한다. 정서적...
-
뭔가 원 그림 그려야 추론되고 풀리는 거 나올 거 같은디 +) 추가 연계 힌트는...
-
실검 지진 ㄷㄷ 0
또 수험생들의 바람에서 나온 무근본 실검이겠거니 했는데 제주에서 ㄹㅇ 지진 났네..? 뭐야
-
잠이 안와요 8
어떡하죠.. 정말 자살해야할까요
-
하 다리아파ㅠㅠ 0
오후에 발목에 벌침맞았음… 진짜 뒤질뻔했는데 시간 좀 지나니까 종아리가 저리네ㅠ
-
진압이 불가능해
-
정보량은 오버슈팅 수준인데 문제 수준도 깊어서 발췌독도 못하네 ㅅㅂ
-
4번 선지 ㄹㅇ 뭐냐?
-
잠안온다 2
걍안자고감
-
새벽 되니까 농도가 더 진해졌네.. 에타가 아니라 다른 어떤 커뮤에 들어와 있는 거...
-
호우 0
신규이벤트,지인추천이벤트,환전지연이벤트 등 각종다양한 이벤트 진행중입니다 호우평생주소.com
-
하 왜 자다깼냐 5
마치 2년전과 같군
-
현재 국어 학원x 국어 인강x 오로지 그냥 기출+ 매3비 같은 교재만 풀고있는데...
-
수능 힘내여 다들
-
클났노
-
파이팅 0
-
모두의 예상을 뒤엎고 9모마냥 수증기 수능이면 증원증원 빔과 함께 어떤 파장을 일으킬지..
-
2005년생부터는 못 맞힙니다
-
머리아파라 내일 전공시간에 수능 풀어야되는데 하
-
그때 본 잠 안오는 수험생이 내가 될줄은 몰랐어 ㅅㅂㅋㅋ
-
ㅅㅂ 좆됏다 핰 30분 자고 깻는데 너무 말똥하고 심장 ㅈㄴ 뛰어서 잠이 안 옴
-
탐구한과목만 1
탐구 두개 신청했는데 1교시때 째고 대기실에 있다가 필요한 2교시만 봐도 되나요??...
-
진짜잠안올땐 4
밥먹으면잠오던데 근데 수능전날 바로밤에 머먹기 그러니까 그냥 눈감고잇는게
-
ㅋㅋ 순도 0%의 오르비가 몇시간동안 지속될 것
-
어차피 수학 시간에 잘 거니까 3시까지 국어 생윤 풀고 자야겠다
-
진지합니다…
-
어차피 5시넘게 못 자거든요 아예 안 졸리면 차라리 앉아있거나 서서 산책좀 하든가 하는 것도 방법임
-
26수능 치고 전역과 동시에 고대 스모빌 입학한다.
-
수능 파이팅 0
!
-
애애애애애ㅐ앵
-
원래 많이 안자고 모고 보긴 했는데 ebs라도 볼까요?
-
밤새고 시험보면 진짜 안되는데.. 이 날만을 위해서 그렇게 고생했는데 진짜....서럽다.....
-
글 양이 한 20배는 차이나겠죠? 차이나는 중국이죠 으하하
-
수능 잠 4
진짜 두시간동안 누워있는데도 잠이 안와요… 막상 가면 괜찮을까요 진짜 자고싶은데ㅜㅜㅜ죽고싶다
-
잠이안와!!!!!!!!!!!!!!!!!!!!!!!! 5
잠이안와!!!!!!!!!!!!
-
노인정으로의 복귀.. 곧 있으면 여기서 1년도 채우겠네요
-
학교마다 암구호 같은 걸로 검거하는 거 개웃긴데 공유좀요 ㅋㅋㅋ
-
사반수는 군대에서 ㅎㅎㅎ 팀04 화이팅
-
글 리젠이 눈에 띄게 줄어들음
-
수능장 책 질문 2
수능장에 개념서 많이 들고가시나요?
-
댓글 ㄱㄱ
-
몸에 뭔 문제 있나 밥만 먹으면 자고 싶어지네
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..