●교과서 분석 - 조건부확률 : 독립과 종속
게시글 주소: https://test.orbi.kr/0001788372
Q.주사위를 던질 때, 짝수가 나오는사건을 A 홀수가 나오는 사건을 B라 하면
A와 B는 독립이다 [ O . X ]
O라고 대답하셨다면 , 혹은 P(A∩B) = P(A) x P(B)로 계산해서맞추셧다면
개념에대한 이해가 부족한것이니 이글을 잘 참고해보시기 바랍니다
단원이 조건부확률 입니다
그렇다면 조건부확률로써 다루겠다는 것인데
조건부확률이란 , 어떠한 특정사건아래에서 다른사건이 일어날 확률이며
P(B l A) = P(A∩B) / P(A) 입니다
이런식으로만 알면 부족한것입니다. 분명히 그의미를 되새겨야합니다 언어영역 잘하시는분들은 무슨말인지 아실껍니다
분모는, A라는 사건이 전체사건이라는 거고, 분자의 의미는 A라는 사건하에서 B라는 사건이 가지는 비율입니다
정확히 이해하셔야합니다.
확률의 곱셈정리가 그다음 나오는데, 이는 조건부확률의 변형을 통해 정의합니다
즉, 직관적 이해를 요구하는거죠, 의미를 알필요가 없습니다. 단지 P(A∩B)를 구하고픈데 조건부확률과 ,어떤 특정확률밖에 모를떄
P(A∩B) = P(B) x P(A l B) 로 변형해서 구하라는 의미입니다 증명은 필요하다면 꼭해줍니다 쓰임을 이해해야하죠
다음 가장중요한 사건의 독립과 종속입니다 그림 봐주세요
어떤 상자에서 공을 꺼내는 표본공간에서 첫번쨰로 빨간공이 나오는게 A , 두번째로 빨간공이 나오는게 B라 할떄, 알아보는겁니다
파란색 부분을 보면 , i)비복원 추출 이라는의미입니다
빨간색 부분을 보면, P(B)라는 사건을 구하기위해 각각을 분리해서 사고하는 베이즈의 정리의 사고가 쓰입니다
그이후 곱셈정리를 이용해 사건을 구하고 있습니다 . 빨간색 과정을 머리속에 완벽히 이해해두시고
혹시나 조건부확률 문제가 나온다면 반드시 이방법으로 풀어보시기 바랍니다
특정사건을 구할 수 없고, 그와 관계된 부분을 알고 있을경우, 특정사건을 ''케이스 분류'' 하는것과 같이 나누어서 생각하고
곱셈정리를통해 그사건의 확률을 구체화 하여 구하는 매우 전형적인 사고방식입니다
표를 그릴수 있는 문제는 무조건 이 사고가 쓰이며, 사건3개 이상이 나오고 표 그리기 불가능한 경우 이 풀이가 가장빠르고 정확합니다
두번쨰 파란색 ii)는 복원추출입니다
그다음 결과를 분석해보면 초록색을 보면
P(B l A) = P(B) 가 성립할경우 즉 사건 A가 일어나는것이 B가 일어나는것에 영향을 주지않는것이 독립이라 정의하고 있습니다
이의미가 몸으로 느껴지십니까? 독립의 이해에 대한 정의는 바로 이부분입니다
어떠한 사건이, 다른사건이 전체집합속에 놓인 경우라도, 그 사건이 차지하는 비율이 변하지않는다!
대단원 명제인 조건부 확률과 연관해서 정확히 사고해보시기바랍니다
서로 사건이 독립이라면! 그 두사건 사이의 관계에서 어떠한 상황이 놓이더라도
확률이 변하지 않는다는 의미이며, 일반적으로 대부분의 사람들이 헛깔리는 배반사건과는 전혀다른 의미입니다
그리고 우리가 일반적으로 알고있는 독립의 정의. 밑에 서술되있는 P(A∩B) = P(A)xP(B)는
확률의 곱셈정리로 변형한 것에 불과하고, 그의미는 P( B l A ) = P( B ) 에 모든의미가 담겨있는것이죠
다만, 곱셈결과로 변형된 것또한 계산문제나, 여타 '''상황이 애매하게 얽혀 있는 부분에서 독립여부를 파악하기위한
어떠한 장치''' 로써의 역할도 분명히 할수 있기에, 두가지 식을 모두 알아두어야합니다
자 그리고 뒷장을 펴보세요 뒷장에 독립시행이 있는데, 그 부분을 자세히 읽어보시고
위의 사진을 다시보세요 ii)의 복원추출과 A , B 사건을 어떻게 정의했는지 보세요
만약 C라는 사건을 3번째로 빨간공이 나오는 사건 이라고 해도 A B C는 모두 독립이 되며
이는, 복원추출이라는 상황이 바뀌지 않는 순간에서, 다음시행과 모두 독립을 가지는 독립시행입니다
즉, 독립과 종속을 증명하는 과정자체속에 이미 독립시행이 무엇인지 알려주고있습니다
인강선생님들이 이렇게 말하죠. 복원추출이라고 독립인것은 아니다 .
당연한 이야기죠. 복원추출이라도 사건을 다르게 정의하면 당연히 독립이 아닙니다
문제에서 독립에 대해 어떻게 이야기하고 있고, 독립시행이란 무엇인지 명확히 보여주고있습니다
독립이란 개념이 완벽히 이해되셨는지 모르겠네요 그렇다면 개념체크
Q. 주사위를 던질때, 짝수의 눈이 나오는 사건을 A라 하자 .
이때, A와 독립을 이루는 사건을 B라고 할떄, B의 부분집합의 개수는 ?
독립의 의미를 이해하셨다면, 그리 어렵지 않을것입니다
이해하지못하셨다면 힘들것이구요
교과서를 분석하는게 단순히 읽고 이해하는 차원에만 머물러도 됩니다
근데 완벽히 이해한것 맞나요 자신이 알고있던것에 껴맞춰서 이해한것 아닌가요?
교과서 안보고 기출문제만 무작정반복해도 좋은점수 받을수 있습니다
근데 기출문제 풀면서 그풀이 자체가 뭔가 외워서 푸는듯 하고, 내 것이 되지않는다면
개념을 깊게 이해하여야 그측면에 빨리 다다를수 있습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
26요청)정시 수험생들, 우리의 입시가 위협받고 있습니다 0
어제 밤 일련의 사태로 인해 윤석열 대통령은 곧 하야 또는 탄핵될 가능성이 높습니다...
-
그냥 하드코어 wwe였음 ㅋㅋㅋㅋ
-
얼버기 2
혼란하다
-
보아하니 별일없이 해제된 모양인거 같은데 맞나여
-
4등급 가능한가요?
-
기상 7일차 1
어으 졸여
-
美언론, 韓계엄해제에 "한밤의 정치드라마…광범위한 파장 전망" 1
NYT "정치 혼란 초래·과거 독재정권 기억 환기"…WP "많은 국민 분노하게 해"...
-
[속보] 오늘 주식시장 정상 개장 결정 당신의 제보가 뉴스로 만들어집니다.SBS...
-
민주당 "尹 대통령 즉각 퇴진 않으면 탄핵 절차 돌입" 2
더불어민주당은 한밤의 비상계엄 사태를 벌인 윤석열 대통령을 향해 "즉각 퇴진하지...
-
어차피 윤석열은 지지율 ㅈ망하고 맨날 김건희 가지고 들들 볶으니까 대통령 그만하고...
-
그냥 쇼였네 쇼 2
이번주 주말 광화문 광장에서 탄핵 시위 보는거 ㄱㄴ?
-
국어강사중 리트,피트병행하는 강사들은 로스쿨,약대 가능한데 안가는거지?
-
야자 강제 및 겨울방학 방과후, 야자 필참. 불참시 기숙사 퇴소 및 특별반(전교권...
-
저희 학교가 겨울방학에 강제로 붙잡아두려는데 기숙사가 저당잡혀 있습니다(통학...
-
끝이네 0
진짜 준비 좆도 안 하고 질렀구나
-
모닝여캐투척 2
음역시귀엽군
-
자고 일어나니 0
계엄령때문에 난리네
-
문재인 때만큼 한전 뽑을 거라서
-
대 석 열
-
기상 완료 새벽에 웬 계엄령 때문에 잠도 못잤어
-
시험장에서의 체감 난도가 점점 덜 느껴지고 기억이 미화되면서 예측 컷이 점점...
-
갈까말까 피곤하긴 함
-
얼버기록 2
어제 3시 반에 잤더니 피곤하긴 하네요 ㅋㅋㅋㅋㅋ 오늘도 파이팅!!
-
원화 가치 급락, 국장 주가 급락 , 국가신용도 급락 <<~ 이게 가장 걱정임...
-
수시 탈락 인원 정시 이월 안하겠네요 어차피 책임지지도 않는 대통령 믿어봤자...
-
모집 중지 이러는 애들은 속이 너무 투명하게 다보임
-
커뮤에서 가져왔는데 이게 맞다고 생각함. 지금 명령을 받고 움직인 계엄군의 죄를...
-
“모집정지는 상식적으로 불가능하다“ 라던 옯붕이들 한밤중에 비상계엄령 내리는건 상식적이었고?
-
계엄사 포고령 중에서 다른건 다 계엄법에 원래 있던 내용인데 졸렬하게 의사 두드려...
-
밤을샜군 4
글쓰기가제일어려워
-
어지럽네 0
여러 의미로... 일단 졸리네요
-
올해 들으려고 했는데 대성에 안 계시네요 ㅜㅜ
-
벌써 수능 칠때인가
-
궁금하네요
-
맞팔구 3
ㅇㅇ
-
기차지나간당 5
부지런행!!! (프사바꿈 어떰)
-
새삼 저런 버러지하고 1년을 싸워온 의사들은 대체.. 1
당신들은 대체 어떤 싸움을 해오고 계셨던 겁니까
-
씨빨새끼야 목매달러가라 씨발 존나좆같네 개병신새끼
-
대 기 상ㅋㅋ
-
윤석열 대통령과 사디르 자파로프 키르기스스탄 대통령이 3일 용산 대통령실에서...
-
이젠 폴리페서도 아니긴 한데 보기 역하네
-
생각을 해보자 생각을
-
[속보] 국무회의서 '계엄 해제안' 의결
-
7시-1시인데 낮시간에 공부하면 ㄱㅊ지않나
-
다 내 또래라는거 어쩌면 나보다 어릴수도 있는 놈들... 감정이입도 되고 군대...
-
똥글들좀 지우고 싶은데 진짜 쓴 글 수가 너무 많아서 엄두가 안 나네요
-
이제 점심밥 생각이나 하려구요
-
전문직 GOAT 0
의사=종북세력과 비슷한 수준으로 다뤄야할 집단전공의 복귀=정치활동 금지, 언론통제,...
-
성적 팍 뜀? 제 주변엔 그럼
수정 끗 .
문제 풀이법은, P(A)=1/2 이기에 , B라는 전체집합이 놓인상황에서도 P(A∩B)의 비율이 변하지 않아야합니다
사실상 독립이란 조건부확률에서 정의된다고 해도 될꺼같네요 단원명칭이 괜히 조건부확률이 아니죠
그렇다면 A={2,4,6}인데 이떄 n(A∩B)= 1 , 2 , 3 일떄를 나누어서
구한후 합의법칙으로 더해주면 됩니다
다들 그렇게 생각하고 있는거 같은데요...;;
와 정말 좋은 설명입니다 이해가 어려웠는데 많은 도움 되었습니다
오래되서 제 댓글 보실진 모르겠네요;; 정말 좋은설명이예요