[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
게시글 주소: https://test.orbi.kr/00065891419
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대성학력개벌연구소 검토조교 신청하신 분들 합격 문자 왔나요????
-
아이 성적은 국숭세단 이나 성신 정도 인 것 같습니다. 컨설팅 예약은 했지만...
-
CPA목표로 하고있다면 어디가 좋을까요? 이유도 남겨주시면 감사하겠습니다
-
하.
-
어떻게 생각함? 영단어를 모두 안다는 가정 하에 해석이 안되는 문장은 지금까지...
-
의대 안 쓰게 하려고 심리전 하는 거 아님? 그리고 수시 발표가 났는데 어케 정시 모집정지를 함
-
[단독] ‘계엄 성지’ 별명 롯데리아, 주문 폭주하고 ‘계엄버거’ 패러디도 2
‘12·3 비상계엄’ 직전 전현직 정보사령관들이 계엄 직전 햄버거 프랜차이즈...
-
현역 재수 약대의 벽은 너무 높구나……보내줘ㅓㅓㅓㅜ 재수는 그냥 지방러라 돈없어서...
-
서울 스나하고 나머지 무조건 안정으로 박기 vs 지방 박고 나머지 스나 서울...
-
외대식 진학사로 649.53인데 어느정도 발뻗잠할 수 있을까요? 하...
-
간거면 개떡상한거임?
-
제가 제 닉네임 처럼 전자공학과 갈려고 반수했는데, 지금 다니고 있는 학교...
-
오르비 모솔분들은 재수때 연애할 기회가. 생기면 하실건가요
-
공감영단어 이거 너무 히트인데 공감영단어로 단어 충분함?
-
도는이유가 대체뭐임?
-
예전에 설대 중높공 가놓고 인생 한탄하던 오르비언 한명 있었는데 2
말은 안했지만 솔직히 지건 존나마려웠음 성별은 XX였고 지금은 탈릅하심
-
가군 성사과 5칸 적정 한양대 경영 경제 둘 다 6칸 안정 로스쿨 생각 있고 씨파는...
-
여론전은 현대사회의 기본요소라는 생각이 들기 시작함 구라와 타인비난만 안섞는다면야
-
25학번 의대생 겁준다고 발작하는건 대부분 예비 의대생이 아님 2
정작 25의대 합격생이나 지망생들은 얘기 진중하게 들어주고 그 와중에 나름 살길...
-
디지털로 찍음
-
겨울 2달 동안이라도 공부하고 가려는데 컴공마냥 코딩에 미친놈들 많아서 도태될 확률...
-
생윤 정법 0
둘다 해보신분들 있음? 공부량 차이나 뭘 더 추천하시는지 알 수 있을까요
-
국민대 합격생을 위한 노크선배 꿀팁 [국민대25][자취, 기숙사, 하숙, 고시원 단점비교] 0
대학커뮤니티 노크에서 선발한 국민대 선배가 오르비에 있는 예비 국민대학생, 국민대...
-
저 1등은 중대 쓸 성적이 아닌데 가나다 군 전부 다 중대에 박아놨네요......
-
피램 왔습니다 1
새책이 이렇게 많이 쌓이니 두근댑니다
-
정치인이 표를 위해서 25학번 의대생들을 위해줄거다 라는 말을 들으면요 동네...
-
과탐 자체가 어질어질해진건 아는데 그나마 과탐중에 생지1 난이도 할만한 편임?...
-
풀어주세요
-
섣불리 결정을 못하겟다;
-
나랑 맞팔해 맞팔
-
준비물: 인터넷, 진학사 계정 특히 소수과일수록 아주 중요함. 표본보다보면 특이...
-
지금 일어나는 일의 본질적인 문제가 지지율이 부족해가지고 의대증원카드를 쓴거라는...
-
대학에서 제일 돈 안드는 방법은 25학번 방치하는거죠 0
25학번 다 뽑아놓고 유급, 제적빔 때리면서 절반 쳐내고 의평원 인증위해 26학번...
-
ㅋㅋㅋㅋㅋㅋㅋ 이게맞냐
-
차이가 뭔가요???
-
반수해서 옮기는 대학교 합격증 인스타에 올리셨음뇨? 아님 ㄴㄴ?
-
[칼럼] 25학번 모집정지가 가능성이 낮은 간단한 이유 7
증원을 맞이한 의과대학은 아래의 세 가지 선택지가 있다. 1) 25학번 모집정지...
-
한국이 그렇게 공평한 나라였다면 남자만 독박징병하는것도 나라가 공평해서임?
-
혼자지내면서 알바하고 그 돈으로 혼자 영화보고 공연보러가고 맛있는거 먹는게 인생...
-
맛점하세요 6
맛점
-
가성비로요!!
-
페미니스트대통령 1
헉
-
프사일러 투척. 2
음 역시귀엽군
-
언제부턴가 우리나라는 상식이란게 통하지 않게 되었네요 3
내일 당장 어떤 일이 일어날지 아무도 알수 없는, 그런 나라가 되어버렸어요 언제부터였을까요
-
준비물:고속, 진학사 계정, 엑셀, 크럭스테이블 진학사는 원점수는 안보여주고...
-
고1,2 모고에서 대부분은 1컷에 걸리는 성적(1,2 왔다 갔다하는 성적)이었음...
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!